Cover Systems and Landforms for Closure of Mine Waste Storage Facilities – Practical Insights with a Focus on Saskatchewan

Brian Ayres, M.Sc., P.Eng.

SMA Environmental Forum – October 17-18, 2018, Saskatoon, SK
Our vision

We strive to be the premier engineering solutions partner, committed to delivering complex projects from vision to reality for a sustainable lifespan.
Mine Waste Storage Facilities (MWSF)

Varying Landforms:
- Ponds of finer, wetter tailings
- Stockpiles of coarser, drier tailings
- Stockpiles of waste rock

Varying Landform Attributes:
- Geochemistry … reactivity, solubility, etc.
- Geotechnical … grain size, strength, etc.
- Geometry … footprint, height, slopes

Varying External Factors:
- Climatic conditions (seasonal)
- Hydrogeological setting

From a closure / reclamation perspective …
- Cover system design will be influenced by numerous factors
- Detailed site characterization is paramount
MWSF Cover System Technology – Evolution over Time

- Mine reclamation started in earnest in 1970s
- Early designs based on landfill liner designs, with unrealistic expectations of performance
- Cover system technology advanced with considerable research since early 1990s
 - MEND (2004) – Cover design manual
 - MEND (2007) – Macro-scale focus
 - MEND (2012) – Cold regions focus
 - INAP (2017) – Global focus

Fundamental Changes in Cover System Technology over Past 40 Years:

- Improved software to numerically simulate cover system performance
- Advancements in modelling methodology
- Much greater appreciation for evolution of cover materials / systems
- Field performance monitoring – evolved from small test plots, to larger-scale field trials, and now watershed-scale focus
- Overall design … more emphasis on how cover system integrates w/ final landform
Objectives and Design Functions of MWSF Cover Systems

Objectives:
› Support agreed-upon end land use
› Minimize degradation of receiving environment post-closure

Most Common Design Functions:
› Waste isolation ("keep clean water clean")
› Re-establish vegetation and ecosystems
› Control wind and water erosion of waste material
› Limit influx of oxygen to reactive waste material
› Limit net percolation of meteoric water through the waste
Example where a Cover System Increased Net Percolation Rates compared to No Cover Scenario

Tailings Impoundment at a Legacy Mine Site in Northern SK

Finer-textured tailings

Ppt $\approx 450\text{mm}$

RO $\approx 150\text{mm}$

AE $\approx 250\text{mm}$

$<0.5\text{m}$

$\{1.0\text{m} \text{ silty-sand till}\}$

NP $\approx 50\text{mm}$

NP $\approx 75\text{mm}$

Cont. Runoff	Cont. Seepage	Total Potential Cont. Flow
No Cover | 150mm | 50mm | 200mm
1m Till Cover | 0 | 75mm | 75mm

Ppt $\approx 450\text{mm}$

RO $\approx 100\text{mm}$

AET $\approx 275\text{mm}$

Finer-textured tailings

Tailings Impoundment at a Legacy Mine Site in Northern SK

Ppt $\approx 450\text{mm}$

AET $\approx 275\text{mm}$

NP $\approx 50\text{mm}$

NP $\approx 75\text{mm}$
Cover System Design Alternatives

Moisture Store & Release (S&R)
- Growth Medium Layer
- Waste Material

Enhanced S&R
- Growth Medium Layer
- Alternate Layer
- Waste Material

Barrier Type
- Growth Medium/Protective Layer
- Barrier Layer
- Waste Material

Covers w/ Geosynthetics
- Growth Medium/Protective Layer
- Drainage/Cushion
- Geosynthetic Material
- Waste Material

Can all of these alternatives function over the long term under SK’s extreme climatic conditions?
Case Study – Cluff Lake Tailings Management Area (TMA)

- TMA received ~2.67 Mm3 (~80 ha) of uranium tailings between 1980 and 2002
- Main Dam – till-bentonite core down to bedrock

Major Concerns for Closure:
1. Ra-226 and Uranium source terms
2. Proximity to sensitive aquatic receptor
3. Limited cover materials – local sandy till (~15% fines)

(Source: COGEMA 2001 Cluff Lake Project Comprehensive Study Report)
Case Study – Cluff Lake Tailings Management Area (TMA)

› Initial thinking was a cover system w/ compacted sand-bentonite layer would be needed to limit net percolation and radon gas emissions

› Concerns arose about the longevity of a barrier-type cover design in a cold region over a tailings deposit

› Through detailed site characterization and analyses, COGEMA demonstrated that a 1.0 m till cover (min.) would be acceptable

› Reclaimed TMA performing as-designed
Example of Enhanced Moisture S&R Cover System

- Compacted waste rock overlain by 1.0 m silty-sand till
- Claude waste rock pile at the former Cluff Lake Mine (Orano Canada)
- B-zone waste rock pile at Cameco’s Rabbit Lake Mine

(Source: Ayres et al., 2013)
Cover Systems with Capillary Break Effects (CCBE)

They work great provided …
› Appropriate textural contrast between adjacent layers
› Capillary break layer remains in a drained state

How can we ensure a CCBE performs as intended over the long term?
› Increase thickness of overlying water storage layer … especially on long slopes
› Use CCBEs where the water table is deeper
Cover Systems with Geosynthetics

Which Product is Right for Your Site?

› Chemical compatibility w/ waste & cover pore-waters?
› Texture of sub-grade material?
› Length of construction season?

Key Cover Design Aspects:

› Lateral drainage / diversion capacity
› Geotechnical stability
› Serviceable lifespan of geomembrane

(Source: www.agru.at/en/products/lining-systems/)
(Source: www.titanenviro.ca)
(Source: www.passel.unl.edu)
Cover System Construction Considerations

Over-Compaction of Growth Medium Layer

› Decreases water storage capacity and limits deeper root development
› Winter construction or use lighter equipment

Revegetation Method

› Higher seed germination rates w/ drill seeder

Potential for Material Segregation

› Gap-graded materials prone to segregation
› Place in thinner lifts, doze for homogeneity

Adequate construction QA/QC!
Performance Monitoring of Reclaimed Mine Waste Landforms

Direct *In Situ* Monitoring:

- Enables tracking *trajectory* of cover system performance
- Feedback during operations (field trials or full-scale areas)

Meteorological station

Subsurface hydrologic station
(w/c, soil suction, temperature)

Runoff station

Groundwater monitoring

Surface water monitoring
Quantifying Net Percolation Rates

› Key input for numerical assessments of contaminant transport

› Simple parameter for stakeholders to understand

Gravity-drainage Lysimeters …

› Conceptually simple, but proper design, installation, and operation can be challenging
Traditional MWSF Reclaimed Landforms vs. Natural Landforms

Traditional MWSF reclaimed landforms:
› uniform shapes w/ linear slopes
› drainage courses highly engineered, typically along contours
› artificial revegetation designs

Natural soil-mantled landforms:
› variety of shapes w/ non-linear slopes
› drainage courses meandering and follow natural drop lines
› vegetation dependant on hillslope hydrology and incident solar radiation

(Source: www.miningfocus.org)
(Source: https://www.nrcs.usda.gov)
Geomorphic Approach to MWSF Landform Reclamation Design

› Emulate the natural landscape that is in equilibrium w/ local climate, soils, vegetation
› Incorporate “forms” that fit the “function”
› Incorporate diversity to promote resiliency, leading to a sustainable ecosystem

Is there a business case to build landforms with a more natural appearance?

1) Reduced maintenance liability post-closure
2) Earlier transfer to custodial care
3) Public relations value (e.g. AB oil sands)
Geomorphic Approach to MWSF Landform Reclamation Design

- Benched slope profiles are prone to failure over the long term.
- Concave slopes are more stable than linear slopes.

Cameco’s Rabbit Lake BZWRP Reclaimed Landform (2010)

(Source: www.ausimmbulletin.com)
Surface Water Management

Why is this important?
› Gully erosion and re-established surface water drainage courses are greatest physical risk to reclaimed landforms (McKenna and Dawson, 1997)
› Erosion gullies have a high visual effect
› Erosion can lead to increased contaminant loading

Key Design Aspects for MWSF Reclamation:
› Incorporate climate change into design storm event
› Clearly defined catchments w/ high drainage density
› Limit drainage channels / outlets on north-facing slopes

(Source: www.dailymail.co.uk)
(Source: www.emnrd.state.nm.us/)
MWSF Landform Design w/ Closure in Mind

“Contour-Terraced Stockpile” (Ayres et al., 2006)

- Facilitates curvilinear slope profile and creation of ridges and swales at closure
Key Take-Away Messages

› Various cover system design alternatives exist, but **simple yet robust designs** are preferred for SK’s climatic conditions

› Use appropriate **landforms** to support design functions of mine waste cover system

› Reclaimed mine waste landforms will **evolve over time** ... design for this fact

› A **business case** exists for building mine waste landforms with a more **natural appearance**

(Source: www.westmoreland.com/)

(Photo courtesy of Orano Canada)
List of References

Our values are the essence of our company’s identity. They represent how we act, speak and behave together, and how we engage with our clients and stakeholders.

SAFETY

We put safety at the heart of everything we do, to safeguard people, assets and the environment.

INTEGRITY

We do the right thing, no matter what, and are accountable for our actions.

COLLABORATION

We work together and embrace each other’s unique contribution to deliver amazing results for all.

INNOVATION

We redefine engineering by thinking boldly, proudly and differently.