Controls on the evolution of stable isotopes of oil sands mine site waters

Spencer Chad – M.Sc Candidate

Department of Civil, Geological, and Environmental Engineering

Overview

- Isotope Theory
- Traditional isotope tracer method for lake water balance
- Isotopic signatures of mine site waters
- Isotope mass balance and E/I ratios
- Isotope mass balance predictive model

Isotope theory

Isotopes = atoms of the same element that have a different numbers of neutrons

- ¹⁸O and ²H are constituent part of natural water molecules—they are the water molecule
- Applied naturally during precipitation events
- Mixing and fractionating processes will alter concentration of water
- 'Light' molecules will preferentially evaporate resulting in enrichment due to fractionation

Enriched due to fractionation

Study

• Can isotope tracer methodology developed for natural systems be applied to an engineered system to answer water balance questions?

GW INPUT **ICE-FREE PERIOD** δ_{SNOWPACK} dV/dt δ_{LAKE} MELT PERIOD RAIN/ EVAPOR-GW ATION INPUT SNOW ICE INPUT δ_{SNOWPACK}

Reproduced from Gibson, J. (2002). Short-term evaporation and water budget comparisons in shallow Arctic lakes using non-steady isotope mass balance. *Journal of Hydrology, 264*(1), 242-261.

Isotope framework

Isotope mass balance

$$V\frac{d\delta_L}{dt} + \delta_L \frac{dV}{dt} = I\delta_I - Q\delta_Q - E\delta_E$$

Assume steady state 'throughflow' scenario

Oil sands water usage

- Syncrude Canada Ltd (SCL), located in Northern Alberta oil sands region, is one of the world's largest producers of synthetic crude oil
- 2.5 m³ of fresh water is required for production of 1 m³ of synthetic crude oil

Annually SCL uses ~160 million m³ of water in extraction, transport, and upgrading

processes for bitumen recovery

Recycle water circuit

- 40 million m³ is 'raw' or freshwater diverted from Athabasca river
- Remaining water is provided from the recycling of oil sands process-affected water (OSPW)
- Focus of this study is OSPW and recycle water circuit (tailings ponds)

Isotopically 'finger printing' site waters

Cooling tower effects

Ave. fraction remaining = 0.67

Natural ponds test

 δ^{18} O ‰ (VSMOW)

Quick napkin math...

Input = Rain + Snow + Runoff

Rain = 300 mm

SWE = ~50 mm

Runoff = $0.2 \times 350 \text{ mm}$

 $E = Input (411mm) \times E/I (1.2) = 493mm$

Recycle water circuit E/I ratios

Base Mine Lake predictive model

Isotope Mass Balance

$$V\frac{d\delta_{L}}{dt} + \delta_{L}\frac{dV}{dt} = I\delta_{I} - Q\delta_{Q} - E\delta_{E}$$

$$\downarrow$$

$$\delta_{L_{f}} = (\delta_{L_{i}} \cdot V_{i} + I\delta_{I} - O\delta_{O} - E\delta_{E})\frac{1}{V_{f}}$$

Key findings

- Adapting isotope tracing theory to engineered system
 - a) Better quantify evaporative signals from mining process
 - Cooling tower enrichment
 - Open water evaporation from tailings ponds is not the only contributor to enrichment
 - b) Mixing processes from tailings settlement and blowdown could outweigh open water evaporative enrichment for modelling
 - c) High pumping rates = low residence time in recycle water circuit
 - Need to adapt time scale to observe evaporative enrichment
 - d) Bitumen mats may inhibit evaporation/affect fractionation
 - Eddy covariance over predicting evaporation at Base Mine Lake

THANK YOU

UNIVERSITY OF SASKATCHEWAN

College of Engineering

DEPARTMENT OF CIVIL, GEOLOGICAL AND ENVIRONMENTAL ENGINEERING ENGINEERING.USASK.CA