

SMALL MODULAR REACTORS (SMRs)

https://www.youtube.com/watch?v=wsfrYpfmpWI

Small Modular Reactors for Mining

Diane Cameron | Director, Nuclear Energy Division Natural Resources Canada, Government of Canada

Saskatchewan Mining Supply Chain Forum

April 4, 2019 - Saskatoon, Saskatchewan

Outline

1. Nuclear Energy in Canada

2. Canada's Nuclear Energy Supply Chain

3. Small Modular Reactors (SMRs)

Nuclear Energy in Canada

Canada's nuclear sector has a pan-Canadian footprint

And a full-spectrum nuclear supply chain

20% of the world's production of uranium is mined and milled in northern Saskatchewan.

UO₂ is used to fuel **CANDU** nuclear reactors.

UF₆ is **exported for enrichment** and use in foreign light water reactors.

URANIUM
MINING AND
MILLING

REFINING AND CONVERSION

FUEL FABRICATION

NUCLEAR POWER GENERATION

WASTE MANAGMENT

2

Yellowcake is refined at Blind River, Ontario, to produce uranium trioxide.

UO₃

Badioactive waste is produced throughout the nuclear fuel cycle and safely managed in licensed storage facilities:

High-level waste - Nuclear fuel waste

Low and intermediate-level waste | &|| W

Uranium mine and mill tailings waste

Initiatives underway for long-term management of radioactive waste include:

- Deep geologic repositories suitable for all waste categories;
- . Near-surface mounds suitable for LLW and some ILW; and
- Tailings management facilities specially designed for taillings.

All in keeping with internationally accepted approaches and best practices

Small Modular Reactors

Markets are signalling demand for smaller, simpler, and "hybrid" nuclear technologies...

Nuclear energy needed to meet climate change targets—IEA projects it **must double by 2040** to meet a 2 degree scenario.

The **future of nuclear** is SMRs – smaller, simpler, safer and cheaper than full-scale nuclear power

New applications for SMRs, such as load-following renewables, hybrid systems and energy parks

Fleet approach – using the same design for several reactors – increases value proposition

Hybrid energy systems integrate multiple energy sources to increase efficiency and allow for dynamic load-following

SMRs paired with variable renewables could enable higher penetration of variables on a decentralized grid

...and industry is innovating.

What is a Small Modular Reactor?

Small

- Small in size and power output relative to conventional nuclear power reactors
- Some SMR designs are small enough to fit in a gymnasium, others are larger but still smaller than today's reactors

Modular

 Manufactured in factories and transported to site for lower capital costs as well as ease of installation, operation, and removal

Source: Duke Energy, 2012

Reactor

- SMRs use nuclear power, a non-emitting and efficient way to generate electricity
- Some SMR designs also provide district heating, heat for year-round greenhouses, desalination, and water purification
- Next generation SMR are designed for simplified ("passive") safety and proliferation resistance

Small modular reactors are nuclear re-imagined...

There are three distinct markets for SMRs in Canada

1. On-grid power (150 to 300 MWe)

Competitive option for replacement of coal-fired generation

2. Heavy industry (10 to 80 MWe)

SMRs could reduce mine energy costs by 20-60%

3. Remote communities (1 to 10 MWe)

Longer-term market; over 70K communities internationally An SMR sub-sector is emerging in Canada, with an eye to a pan-Canadian

domestic market...

Oil sands

- Steam for SAGD and electricity for upgrading at 96 facilities
- 210 MWe average size for both heat and power demands
- 5% replacement by SMRs between 2030 and 2040 could provide \$350-450M in value annually

High-temperature steam for heavy industry

- 85 heavy industry locations (e.g. chemicals, petroleum refining)
- 25-50 MWe average size
- 5% replacement by SMRs between 2030 and 2040 could provide \$46M in value annually

Remote communities and mines

- 79 remote communities in Canada with energy needs > 1 MWe
- SMRs replacing costly diesel and heating oil could reduce energy costs to the territorial government
- The high cost of energy from diesel is a barrier. SMRs could facilitate and enable new mining developments
- 24 current and potential off-grid mines

Replacing conventional coal-fired power:

- 29 units in Canada at 17 facilities
- 343 MWe average size
 - 10% replacement by SMRs between 2030 and 2040 could **provide \$469M in value annually**

Bottom line: SMRs could conservatively yield \$5.3B in total value between 2030 and 2040.

Canada's Small Modular Reactor Roadmap

SMRs as a source of safe, clean, affordable energy opening opportunities for a resilient, low-carbon future and capturing benefits for Canada and Canadians.

www.smrroadmap.ca

Government of Canada is taking action on key priorities for 2019...

- ✓ Mining: focused engagement with mining sector on end-user requirements, taking steps to foster strategic partnerships
- ✓ **Indigenous engagement**: preparing ongoing engagement strategies in partnership with Indigenous peoples
- ✓ Global enabling frameworks: active engagement and leadership
 in key fora (CEM, NEA, IAEA); validating size and pathways to
 global deployment
- ✓ Strategic bilateral partnerships: collaboration with other international leaders on SMRs (US, UK)
- ✓ **SMR demonstration:** project evaluation progressing across multiple markets (on-grid, off-grid, mining)

Partnerships will be key to success

Roadmap called for "Team Canada" to come together with concrete commitments for action.

The Pan-Canadian supply chain is an important partner.

Recommendations for action

The SMR Roadmap contained over **50**recommendations for all essential enablers—

Including two recommendations for the Canadian supply chain.

Recommendations for the Canadian supply chain:

- Organization of Canadian Nuclear Industries (OCNI) should lead on a transition strategy for retooling the Canadian nuclear supply chain.
- 2. Industry should develop and advance initiatives with a view to reducing SMR capital costs (e.g., advanced manufacturing).

OCNI is stepping up!

- Meet supply chain partners at OCNI's Advanced Manufacturing Seminar and Exhibit
- A direct follow-on to the Canadian SMR Roadmap

OCNI One-Day Advanced Manufacturing Seminar and Exhibit

Cost:

OCNI Member \$200 Non-OCNI Member \$250 (plus HST)

Tuesday, April 16, 2019 8:00am - 4:00pm

Hilton Garden Inn in Oakville | 2774 S Sheridan Way, Oakville, ON L6J 7T4

Presentations From:

- Mike Blundell, KSB Canada
- David Gandy, EPRI
 Viktoras Borodinas, OPG
- Frank Saunders, Nuclear Innovation Institute
- Mike Blundell, KSB Canada
- David Gandy, EPRI
- Viktoras Borodinas, OPG
- Frank Saunders, Nuclear Innovation Institute Clint Armstrong,
- Robert Akans, Centre for Advanced Nuclear Manufacturing
- Gina Strati, CNL
- · Richard Barnes, ASME
- Raj Manchanda, ASME
 Brian Behnke, ASME
- Brian Behnke, ASME
 Steve Evans, Promation Nuclear
- Kenneth Barclay. Additive Metal Manufacturing.
- Tamas Liszkai, NucScale Power
- William Smith, Terrestrial Energy
- Mostafa Yakout McMaster University
- Markus Piro, UOIT
- Peter Adams, Burloak Technologies Inc.
- Brandon Bouwhuis, Burloak Technologies Inc.
- Hamid Azizi, Burloak Technologies Inc.

www.ocni.ca

REGISTRATION

Canada