

Large Strain Consolidation and Hydraulic Conductivity Testing of Fine Tailings

Kevin Freistadt, Julian Gan, and Moir Haug

Introduction

Subject

Measurement of large strain consolidation and hydraulic conductivity of fine tailings

Need

- Time and load required for tailings to consolidate gain strength - facilitate decommissioning
- Mechanisms to speed tailings dewatering and settlement:
 - i. physical loading and dewatering strategies,
- ii. chemical and biological treatments.
- Measurement of hydraulic conductivity

Introduction

Objectives

- > To develop laboratory equipment and procedure capable of:
 - Accurately measuring large strain consolidation,
 - Simultaneously measuring hydraulic conductivity.

Background

Definitions

Gravimetric water content (ω) = m_{water}/m_{solids}

Solids content =
$$m_{solids}/m_{total}$$
 = $1/(1 + \omega)$

Void ratio (e) = $V_{\text{voids}}/V_{\text{solids}}$

Porosity (n) =
$$V_{\text{voids}}/V_{\text{total}}$$
 = e/(1 + e)

Background

Sedimentation and consolidation

- Stage 1 Flocculation: Particles coming into contact and growing in size
- Stage 2 Sedimentation: Soil particles begin to contact one another and settle out.
- Stage 3 Consolidation: All particles are in contact and begin to carry "load" (consolidate).

Background

Fine Tailings

- Centrifuge Fines
- Often Polymer Treated

Design Criteria

LSC Testing

- Large deformation capability tall consolidation cells
- Accurately apply low stress large diameter cells
- Apply wide range of loads (i.e. precision over large range of loading)
- Ability to measure pore pressure along the height of the sample
- > Collect effluent for chemical testing and K-testing

Design Criteria

Hydraulic conductivity testing

- Constant hydraulic head across the sample for entire LSC test
- K measurements taking flow measurements with time
- Avoid changes in stress regime due to seepage start/stop

Construction of the Test Equipment

LSC Testing

- > 165 mm high consolidation cells
- > Stainless Steel chemical resistance
- > Low Load
 - > Small to start, ~ 0.5 kg
 - Counterweight, low friction
- High Load
 - > 1000 kg (effective) via mechanical advantage
- Measure pore pressure along the height of the sample
- Ability to collect effluent

Construction of the Test Equipment

Hydraulic Conductivity

- Hydraulic head, Δh , across the sample (≥ 1 cm)
- Applied continuously during LSC testing
- Marriotte bottle constant head and eliminates problem with evaporation

LSC – Test Procedures

LSC – Test Results – e log P

- Each soil/material has a unique e-log P relationship
- Higher Cc values represent greater compressibility
- e log P relationships can be altered by chemical and biologically induced stress

<u>Typical compression index values</u> <u>(after J M. Pestana-Nascimento)</u>

Normal consolidated clays	0.2 - 0.5
Canada Leda clay	1-4
Organic clays	4+
Peat	10-15
Organic silty clay	1.5 - 4
San Francisco sediments	0.4 - 1.2

Hydraulic Conductivity – Test Procedures

- e log K (Hydraulic Conductivity) relationship
- After completion of primary consolidation
- Start/Stop Flow → ± Stress → Consolidation
- Seepage induced consolidation critical at low loads.
- Constant, low flow throughout test
 - Constant head tank (Mariotte Bottle)
 - As low as 1 cm head differential

LSC – Test Results - e log K

LSC – Practical Application

Initial solids content, 48%

Desired solids content 73% (based on strength)

Required surcharge:

2.8 m sand at 1800 kg/m3 ~ 50 kPa.

Summary and Conclusions

- Developed Specialized Laboratory Equipment
 - > Suitable for tailings from various mines
 - > Oilsands, Base metals, Potash, and Infrastructure
- > 0.1 500 kPa or ~ 1 1000kg
- Produce accurate and repeatable test results
- Results can be used for prediction of settlement time and loading
- Decommissioning applications

