-= Is there an environmental cost to lethal fish sampling under the Canadian metal mining EEM program?

Alyse Kambeitz, University of Saskatchewan \& Canada North Environmental Services
Kelly Wells, Canada North Environmental Services
Cassandra Rees, Canada North Environmental Services
Karsten Liber, University of Saskatchewan

Background

Fisheries Act

Metal \& Diamond Mining Effluent Regulations (MDMER)

Environmental
Effects Monitoring (EEM) program

- Biological, effluent, and receiving water quality monitoring studies
\square Biological monitoring includes:
- Benthic invertebrate communities
- Fish tissue
- Fish populations

Background

- Fish populations monitored generally every 3 years
- 6 cycles since 2002

Table 1-1: Effect indicators and endpoints for the fish population survey

Effect Indicators	Effect Endpoints
Growth (energy use)	Size-at-age (body weight relative to age)
Reproduction (energy use)	Relative gonad size (gonad weight to body weight)
Condition (energy storage)	Condition (body weight to length) Relative liver size (liver weight to body weight)
Survival	Age

Table taken from the Metal Mining EEM Technical Guidance Document (EC 2012)

Background

- The MDMER and EEM program are designed around lethal fish population studies with non-lethal as an alternative
"Although the standard fish survey is recommended, other survey designs... may be considered under conditions where the standard survey is not effective or practical."
"Non-lethal sampling should only be used in situations where it is warranted."

Background
Regulation and guidance inconsistencies

- Results in little attention to non-lethal

Background

- Standard lethal fish survey:
- 2 sentinel fish species
- Minimum sample size of 20 male, 20 female, 20 juvenile (if small-bodied fish spp.)
- Exposure \& reference area

- However, more fish are often killed because:
- Sufficient statistical power
- Multiple reference areas
- Trouble obtaining target species or sex ratio
- By-catch

Background

- Stakeholders want to minimize effects on fish populations from monitoring

Objectives:

1. Assess the extent of fish sacrificed
2. Examine potential effects of lethal sampling
3. Assess the congruity between lethal and non-lethal sampling results
4. Highlight challenges of EEM non-lethal surveys
5. Examine emerging non-lethal sampling alternatives

Extent

Objective 1) Estimate the extent of fish mortality under the EEM program

- Saskatchewan metal mine data used to quantify and estimate the extent of fish sacrificed at the site, provincial, and national levels
- More holistic estimate

Extent

Extent

- National level for routine monitoring

Extent

Potential Population Effects

Objective 2) Examine the potential effects of fishing pressure on fish populations

- Saskatchewan case study
- Reference lake data
- 5 consecutive cycles
- Small, low productivity
- Literature reviewed to determine generalized fishing pressure effects

Potential Population Effects

Endpoints	Potential Effect of Fishing Pressure	Source
CPUE	\downarrow	Kantoussan et al. 2014
Growth rate	\uparrow	Munkittrick and Dixon 1989; Heino and Godo 2002
Relative gonad size	\uparrow	Heino and Godo 2002
Condition	\uparrow	Munkittrick and Dixon 1989
Mean age	\downarrow	Munkittrick and Dixon 1989

Potential Population Effects

Potential Population Effects

		Age		Gonad weight		Condition		Size-at-age	
		LKC	STC	LKC	STC	LKC	STC	LKC	STC
RL1	Female	NSD	\downarrow	\downarrow	NSD	NSD	NSD	NSD	NSD
	Male	\uparrow	\downarrow	NSD	NSD	NSD	NSD	NSD	NSD
RL2	Female	\downarrow	NSD	\downarrow	\downarrow	\uparrow	NSD	\downarrow	\downarrow
	Male	\downarrow	\downarrow	NSD	NSD	NSD	NSD	NSD	\uparrow
RL3	Female	NSD	-	NSD		\downarrow	-	\uparrow	-
	Male	NSD	-	1	-	\downarrow	-	NSD	-
RL4	Female	-	\uparrow	-	\uparrow	-	\downarrow	-	\downarrow
	Male	-	\downarrow	-	NSD	-	NSD	-	NSD

Text $=$ Reference data trends
Color $=$ Alignment with fishing pressure effects identified in the literature

Potential Population Effects

- Concluded that our hypothesis was not supported by a weight of evidence approach
- Specific fish and reference lakes
- Not a targeted study design

Case Study: Non-Lethal vs. Lethal

Objective 3) Assess the congruity between lethal and non-lethal sampling results for a particular case study

- Saskatchewan metal mine
- 3 consecutive EEM cycles
- All effect indicators (i.e., survival, energy use \& energy storage) evaluated
- Same information between the exposure and pooled reference areas?

Case Study: Non-Lethal vs. Lethal

Energy Storage		Non-lethal Endpoint Condition (body weight relative to length)	Lethal Endpoint		Do the results agree?	
		Condition (adjusted body weight relative to length)				
		All	Male	Female		
2017	Spottail shiner		$>$	NSD	NSD	X
2017	Lake chub	>	>	>	\checkmark	
2014	Spottail shiner	NSD	$<$	NSD	X / V	
2014	Lake chub	<	<	<	\checkmark	
2011	Spottail shiner	NSD	NSD	NSD	\checkmark	
2011	Lake chub	>	NSD	NSD	X	

NSD- No significant difference
> and <- significant differences between pooled reference data and exposure data

Case Study: Non-Lethal vs. Lethal

Energy UseReproduction		Non-Lethal Endpoint	Lethal Endpoint		Do the results agree?
		Relative abundance of YOY	Gonad weight against age		
		All	Male	Female	
2017	Spottail shiner	NSD	>	<	X
	Lake chub	NSD	<	NSD	X / \checkmark
2014	Spottail shiner	NSD	>	$<$	X
	Lake chub	NSD	NSS [-]	(<)	X
2011	Spottail shiner	NSD	< to >	NSD	X / \checkmark
	Lake chub	NSD	\leqslant	(<)	X

NSD- No significant difference; > and <- significant differences between pooled reference data and exposure data; < to > a significant difference in the slopes of the relationship between measurements used to calculate the effect endpoint; [] results when outliers were removed.

Case Study: Non-Lethal vs. Lethal

Energy UseReproduction		Non-Lethal Endpoint Relative abundance of YOY All	Lethal Endpoint		Do the results agree?	
		Gonad weight against age				
		Male	Female			
2017	Spottail shiner		NSD	>	<	X
	Lake chub		NSD	$<$	NSD	X / V
2014	Spottail shiner	NSD	>	<	X	
	Lake chub	NSD	NSD [<]	<	X	
2011	Spottail shiner	NSD	<to>	NSD	X / V	
	Lake chub	NSD	$<$	<	X	

NSD- No significant difference; > and <- significant differences between pooled reference data and exposure data; < to > a significant difference in the slopes of the relationship between measurements used to calculate the effect endpoint; [] results when outliers were removed.

Case Study: Non-Lethal vs. Lethal

- Inconsistent results..
- Could lead to different monitoring outcomes
- What are the EEM endpoints telling us?

Non-lethal Guidance Challenges

Objective 4) Evaluate the challenges associated with the EEM guidance and conventional effect endpoints

- Critical Effect Size (CES)
- Recent addition to MDMER
- Not provided for all non-lethal effect endpoints
- Statistical disadvantage

	Lethal CES	Non-lethal CES
Survival	25%	N/A
Growth (Energy Use)	25%	N/A
Reproduction (Energy Use)	25%	N/A
Energy Storage	10%	10%
25%	N/A	

Non-lethal Guidance Challenges

- Based on 1 publication - Gray et al. 2002

	Lethal Effect Endpoints	CES	Non-lethal Effect Endpoint	CES
Survival	Gonad weight at body weight Body weight at length Liver weight at body weight	25\%	Length-frequency distribution Length of YOY and body weight of YOY	N/A
Growth (Energy Use)		25\%		N/A
Reproduction (Energy Use)		25\%	Relative abundance of YOY	N/A
		10\%	Body weight at length	10\%
		25\%	N/A	N/A

Non-lethal Guidance Challenges

Lethal
Option
Non-lethal
Option

Limited CESs
YOY emphasis
Not in the
regulations

Discussion

- MDMER recently amended with continued lethal focus
- Improve non-lethal endpoints, statistical tests, and sampling guidance
- EEM program is not usually the only pressure
- Other research projects, recreational fishing, etc.
- Selenium fish tissue study recently added to the MDMER

Take Home Message

- Strengthen the non-lethal sampling design, then
- No need to continue sacrificing fish
- Minimize ecological disturbance
- Explore emerging non-lethal alternatives as technology advances

Thank you! Questions?

References

Heino M, Godo OR. 2002. Fisheries-induced selection pressures in the context of sustainable fisheries. Bull Mar Sci 70(2):639-656.

Kantoussan J, Ecoutin J, Fontenelle G, Morais L, Laë R. 2014. Catch per Unit Effort and yields as indicators of exploited fish communities: Application to two West African. Lakes Reserv Res Manag 19:86-97.

Munkittrick KR, Dixon DG. 1989. A holistic approach to ecosystem health assessment using fish population characteristics. Hydrobio 188/189:122-135.

