"It's all about the Water!" Integrating Water Management as a Primary Consideration in Tailings Management Practices

Erik Ketilson, MEng, PEng SRK Consulting – Saskatoon

Presentation Outline

- How do we manage water
- Responsible Tailings Management
 - water balance
 - deposition planning
 - integrating the water balance and deposition planning
- Operational Examples (2 Cases)
- Conclusions

How Do We Manage the Water?

- Tailings continuum
- What's feasible

annital /

TAILINGS DAMS ARE NOT WATER DAMS

- Risk increases with volume of water
- How do we manage the risk with slurried tailings

Responsible Tailings Management What's the Risk? Why do we care?

Image Source: america.Aljazeera.com

Responsible Tailings Management How do we Implement?

The Water Balance

- Typical water balance schematic
 - Problems
 - · Hard to track / measure / quantify
 - Seepage (to/from facility)
 - Evaporation
 - Direct run-off
 - Evapotranspiration
 - Groundwater recharge Mill
- A Focus on Things we Can Measure
 - Simple Water Balance
 - 3 key elements to track

The Simple Water Balance A Focus on Things we can Measure

Deposition Planning

- Typically this has stopped at the end of pipe
- How do I maximize the capacity in facility?
- How do I maintain my minimum beach length, or water cover?

Deposition Planning

- A proper plan will give you:
 - How long do I discharge from a given point?
 - Discharge sequencing
 - Discharge duration
 - Where do I position my discharge points / reclaim barge
 - Were do the access roads need to be?
 - Depth / limits & changing storage capacity of the pond

Integrating the Water Balance and Deposition Planning

- Ensure you're prepared for:
 - Changes in pond inventory due to wet / dry years
 - Potential for encroachment on the flood storage and freeboard
 - Maintaining minimum beach lengths
 - Changes in water treatment or discharge rates

OPERATIONAL EXAMPLES

- 21 years of operation
- 10 Years C&M
 - 6 Ownership changes
 - Did not retain design engineer
 - Loss of corporate memory
- Designed for flood storage
- Water treatment required prior to discharge
- No requirement to record water levels

- Lack of water balance understanding
 - Dam Instability
 - Repair Costs
 - Engineering
 - Construction

- Operating Site
- Slurried tailings deposition
- Must store design flood
- Maintain minimum beach length of 100 m
- Strict operating levels for reclaim
- Integrated tailings deposition planning & water balance

- Water Balance
 - Target water level
 - Predicted WL based on wet / average / dry year
 - Do we need to do anything?
 - What will happen if we don't do anything?
 - Operator's can easily see / track water level
- Deposition planning
 - Timing & placement of deposition points
 - Plan for where the pond should be
 - Plan to achieve final closure configuration

Conclusions

- There are methods to reduce the risk associated with slurried tailings facilities
- Integration of the water balance with deposition planning is critical
- For deposition planning you need the "Simple Water Balance"
- Tailings dams are not water dams!