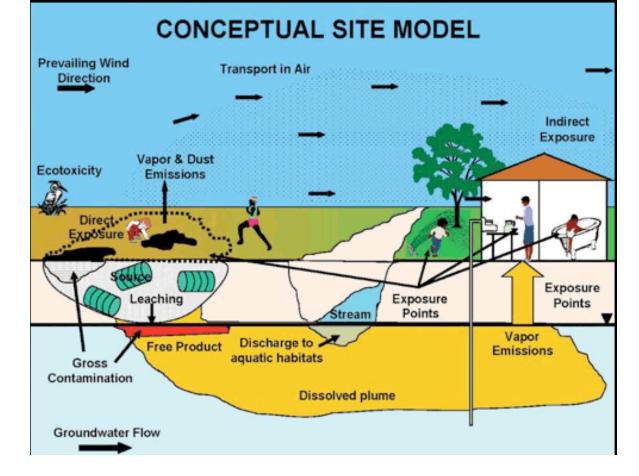


# Permeable Reactive Barriers Can Be a Cost Effective Tool To Deal With Groundwater

SMA Environmental Forum Ryan Riess, M.Sc. P.Eng PINTER & Associates October 17, 2018






## Overview

- Source-Pathway-Receptor Discussion
- Soil Ingestion Pathway Example
- Permeable Reactive Barrier(PRB) Basics
- Case Study 1
- Case Study 2
- Case Study 3
- Case Study 4
- Questions





## Source-Pathway-Receptor







## **Soil Ingestion Pathway**





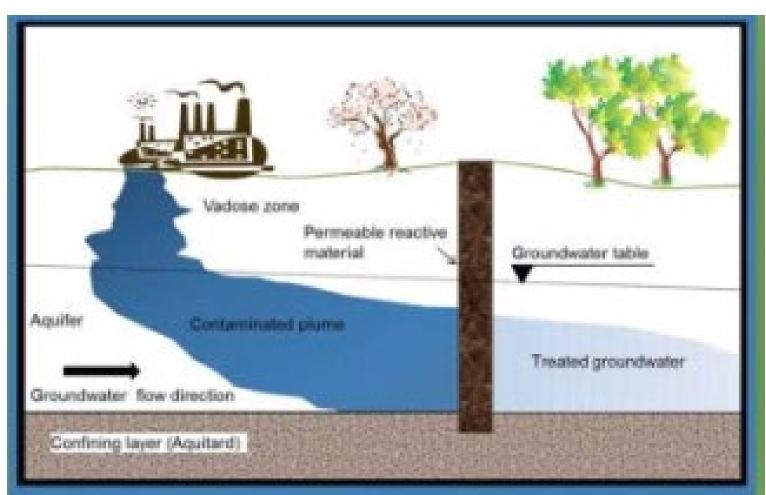


# **PRB Basics**

- Must be more permeable than surrounding soils
- Ideally tied in to an underlying impermeable layer
- Can be used to protect specific receptors, eliminate specific pathways or achieve full remediation






# **PRB Basics**

- Reactive material can be mixed with sand or gravel
- Can be effective from months to decades
- Four main processes:
  - Stick to reactive material;
  - metal precipitation,
  - reaction directly with prb material,
  - biodegradation





### What is a PRB?



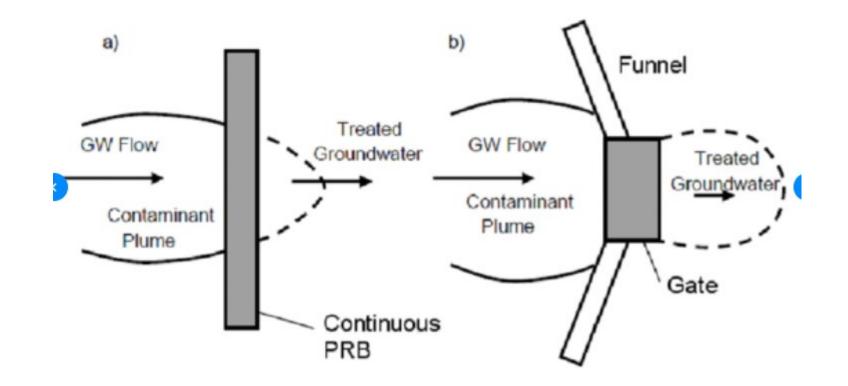




### Contaminants

Table 4-1. Examples of COCs treated by types of reactive materials used in PRBs

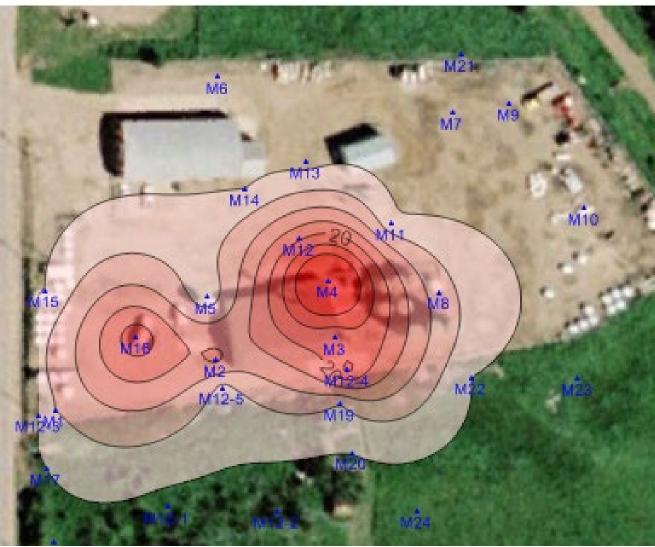
| COCs                                                                                      | IVZ              | Biobarriers | Apatite | Zeolite | Slag | ZVI-carbon<br>combinations | Organophilic<br>clay |  |  |  |
|-------------------------------------------------------------------------------------------|------------------|-------------|---------|---------|------|----------------------------|----------------------|--|--|--|
| Chlorinated ethenes, ethanes                                                              | $\mathbf{F}^{a}$ | F           |         |         | L    | F                          |                      |  |  |  |
| Chlorinated methanes, propanes                                                            |                  |             |         |         |      | F                          |                      |  |  |  |
| Chlorinated pesticides                                                                    |                  |             |         |         |      | Р                          |                      |  |  |  |
| Freons                                                                                    |                  |             |         |         |      | L                          |                      |  |  |  |
| Nitrobenzene                                                                              | Р                |             |         |         |      |                            |                      |  |  |  |
| Benzene, toluene, ethylbenzene, and xylenes (BTEX)                                        |                  | F           |         |         |      |                            |                      |  |  |  |
| Polycyclic aromatic hydrocarbons (PAHs)                                                   |                  |             |         |         |      |                            | L                    |  |  |  |
| Energetics                                                                                | Р                | F           |         |         |      | Р                          |                      |  |  |  |
| Perchlorate                                                                               |                  | F           | F       | L       |      | L                          |                      |  |  |  |
| NAPL                                                                                      |                  |             |         |         |      |                            | F                    |  |  |  |
| Creosote                                                                                  |                  |             |         |         |      |                            | F                    |  |  |  |
| Cationic metals (e.g., Cu, Ni, Zn)                                                        | L                | F           | F       |         | L    | F                          |                      |  |  |  |
| Arsenic                                                                                   | F                |             |         | L       | F    | F                          |                      |  |  |  |
| Chromium(VI)                                                                              | F                |             |         | L       | L    | F                          |                      |  |  |  |
| Uranium                                                                                   | F                | Р           | F       |         |      | Т                          |                      |  |  |  |
| Strontium-90                                                                              |                  |             | F       | F       |      |                            |                      |  |  |  |
| Selenium                                                                                  | L                |             |         |         |      | L                          |                      |  |  |  |
| Phosphate                                                                                 |                  |             |         |         | Р    |                            |                      |  |  |  |
| Nitrate                                                                                   |                  | F           | F       |         |      | F                          |                      |  |  |  |
| Ammonium                                                                                  |                  |             |         | L       |      |                            |                      |  |  |  |
| Sulfate                                                                                   |                  | F           |         |         |      | L                          |                      |  |  |  |
| Methyl tertiary butyl ether (MTBE)                                                        |                  | F           |         |         |      |                            |                      |  |  |  |
| ${}^{a}$ E = full-scale application L = laboratory evaluation P = pilot-scale application |                  |             |         |         |      |                            |                      |  |  |  |


<sup>a</sup> F = full-scale application, L = laboratory evaluation, P = pilot-scale application.



• ITRC, 2011




# **Continuous, Funnel and Gate**







### **Case Study 1 - Viterra**





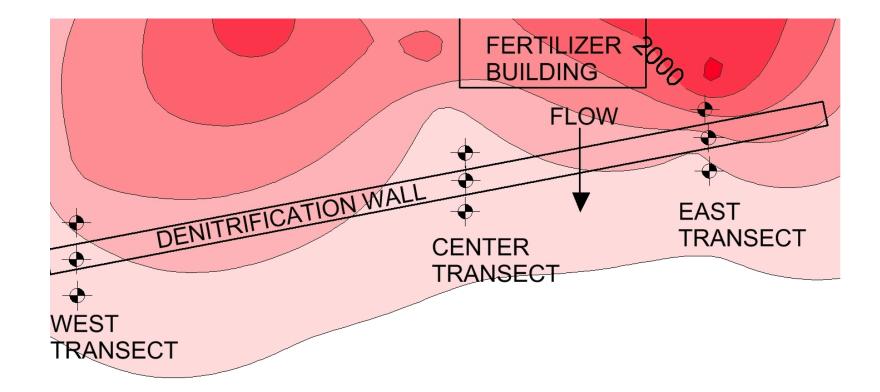


### PRB Construction for Biological Denitrification





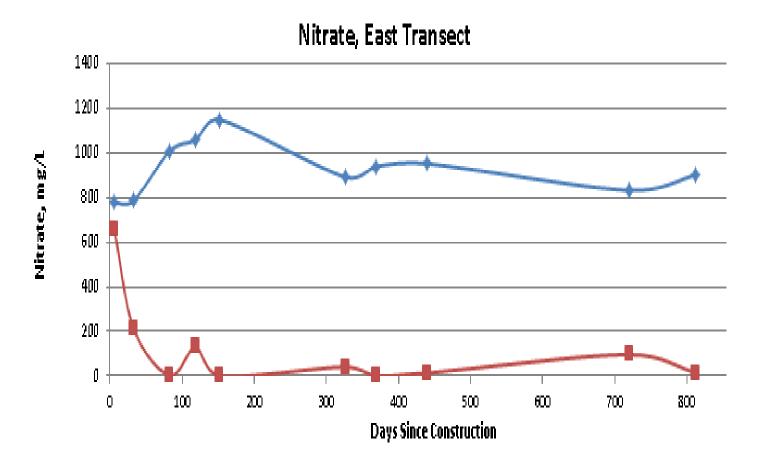



### **PRB Post Construction**





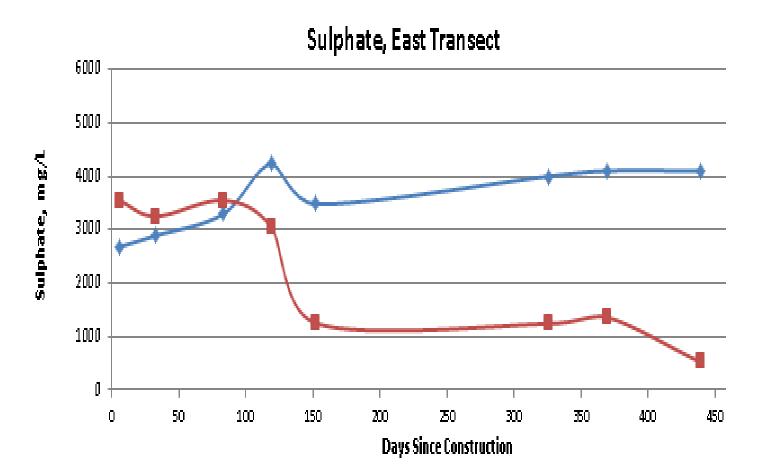



### Results








### **Results Nitrate**





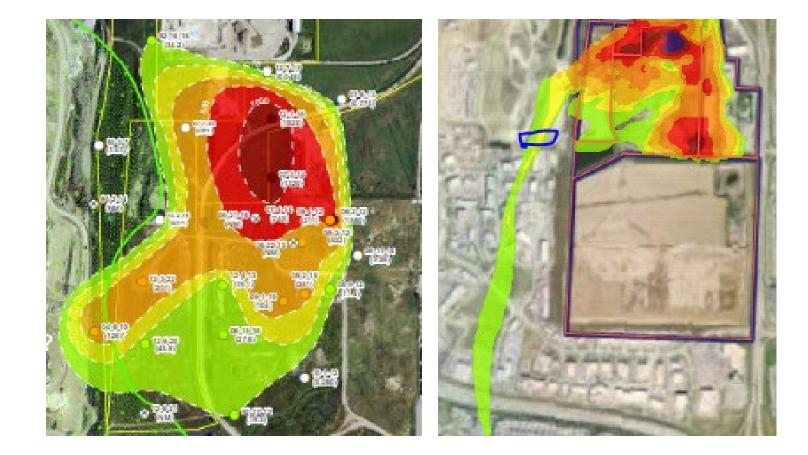


## **Results Sulphate**








# **Conclusions Case Study 1**

- Nitrate removal > 90%, Sulphate >80%
- Downstream well protected
- Installation cost of about \$150,000
  - PRB design life approximately 30 years
- Conventional bids were in the 3 5 million range
- PINTER won provincial and national ACEC award of excellence for this project in 2014





## Case Study 2







## Installation

#### Installed depth between 9 and 11 m







## **Results – Case Study 2**

- Nitrate removal >99%
- Sulphate removal >95%
- PRB design life about 30 years
- Bow River no longer at risk
- All in costs about \$350,000
- Full remediation estimates in excess of \$10 million, never seriously pursued





# **Case Study 3**

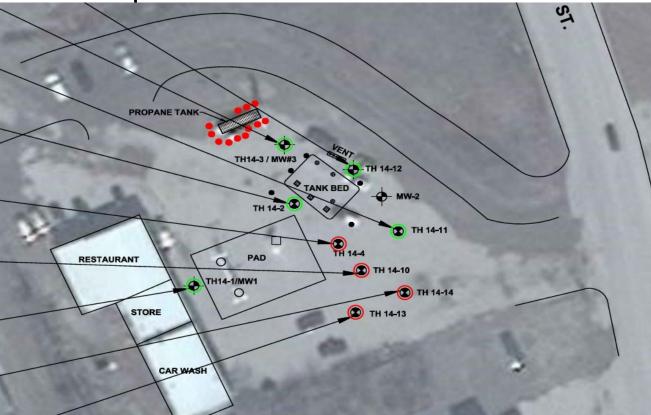
- Design
- Expert witness







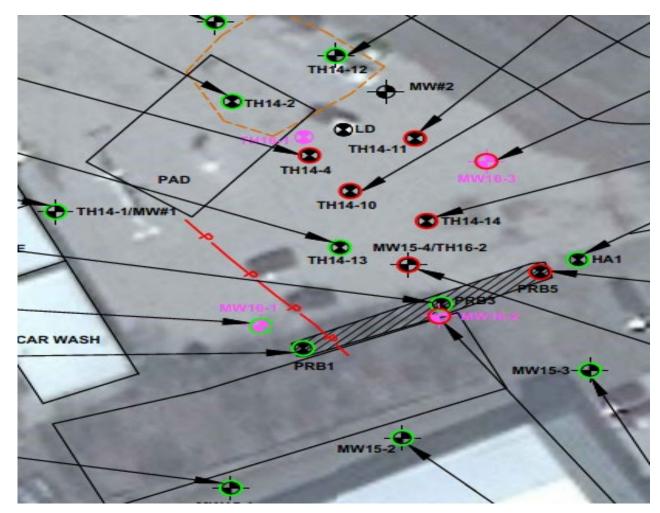
# **Case Study 3 results**


- Current system is a wastewater plant near end of service life
- 30 year cost of current system were known, projected costs for next 30 years ~ 55 million.
- 30 year cost of a PRB installation ~7 million
- In pilot studies presently





## CASE STUDY 4 - PHCs FULL REMEDIATION


- BTEX, F1 GW flow south, ~30 m/year
- Lake is present 300 m south







### CAP – TIER 2



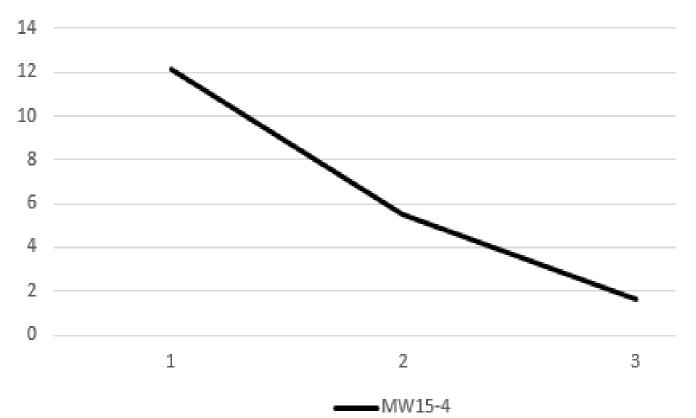




### Installation










# **Groundwater Results**

About 86% reduction in MW15-4

GW BTEX, F1-F2







## **Worst Case Soil**

#### • MW15-4, just north of PRB

| 15-4          | Date Sampled | CVC  | В     | Т      | E      | Х     | F1    | F2    | F3    | F4    |
|---------------|--------------|------|-------|--------|--------|-------|-------|-------|-------|-------|
|               |              | ppm  | mg/kg | mg/kg  | mg/kg  | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg |
| 15-4-4 @ 3.0m | 22-Sep-15    | 1000 | 7.22  | 67.6   | 78.4   | 285   | 12500 | <90   | 604   | <90   |
| 15-4-2-4@3.0m | 25-Sep-17    | 120  | 0.145 | <0.070 | <0.023 | <0.11 | <40   | <25   | 238   | 78    |





## **Results - Soil**

#### • Average Benzene Removal – 98%







# **Case Study 4 Summary**

- Site wide remediation in 2 years, Tier 2 closure from MOE
- No Site downtime
- Costs of approximately \$50,000 compared to dig and dump estimates of \$500,000
- Project is nominated for national and provincial ACEC awards this fall





## Summary

- PRBs can be a cost effective tool
  - Can protect receptors
  - Can Eliminate pathways
  - Can Achieve full remediation
- Not a magic bullet and more front end information required than with other approaches





### **QUESTIONS?**

### 306-244-1710 ryan.riess@pinter.ca

