# Climate Change for Engineers: How to Consider Future Unknowns in the Context of Design Today

Lindsay Tallon, O'Kane Consultants Andrew Baisley Graham Hay SMA Environmental Forum October 18, 2018

O'Kane Consultants

### **Climate Change – A Very Big Deal**



Eudaimonia

Follow



Sign in Get started

HOME EUDAIMONICS THE FUNDAMENTALS THE PRINCIPLES WORKING TOGETHER Q THE STORY

#### Why Catastrophic Climate Change is **Probably Inevitable Now**

How Capitalism Torched the Planet by Imploding Into Fascism





### **Or Not So Much**

CNN Health » Food | Fitness | Wellness | Parenting | Vital Signs

#### Live TV 🔹 U.S. Edition + 🔎 🗮

# Climate change to cause global beer shortage, study says

By Susan Scutti, CNN

Updated 11:00 AM ET, Mon October 15, 2018

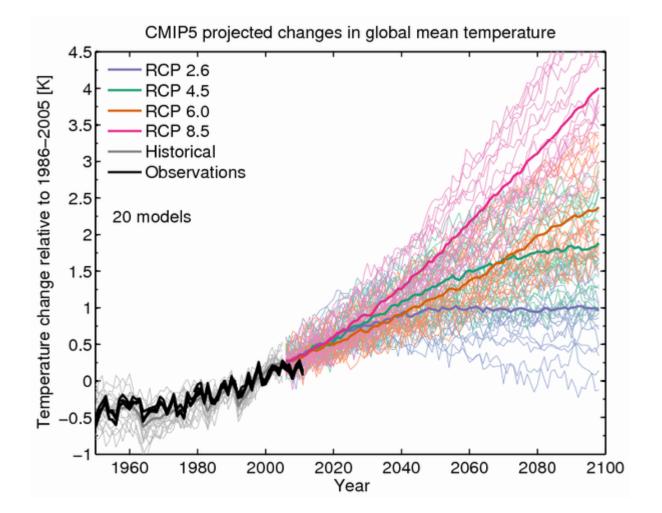




#### More from CNN



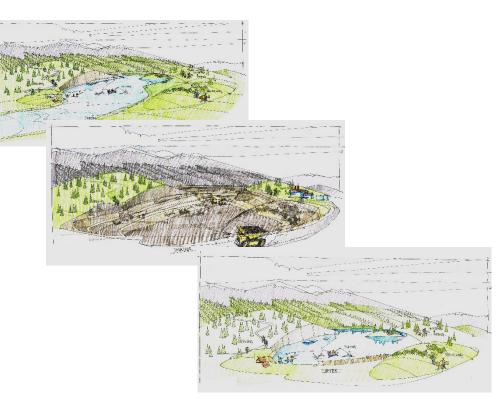
NFL Trade Rumors: Cardinals Open to Dealing Patrick Peterson...




ALCS Bracket 2018: Updated Dates, Times, Schedule and World...

> O'Kane Consultants Integrated Mine Waste Management and Closure Services Specialists in Geochemistry and Unsaturated Zone Hydrology

Making beer from river water 01:46


### **Revert To Your Training**



O'Kane Consultants Integrated Mine Waste Management and Closure Services Specialists in Geochemistry and Unsaturated Zone Hydrology

# Advancing a Design

- What is driving the design?
  - Uncertainty?
  - Technical work?
- Place in the proper context
- What supports an engineering design?
- What has worked





# Trying to Go From This...

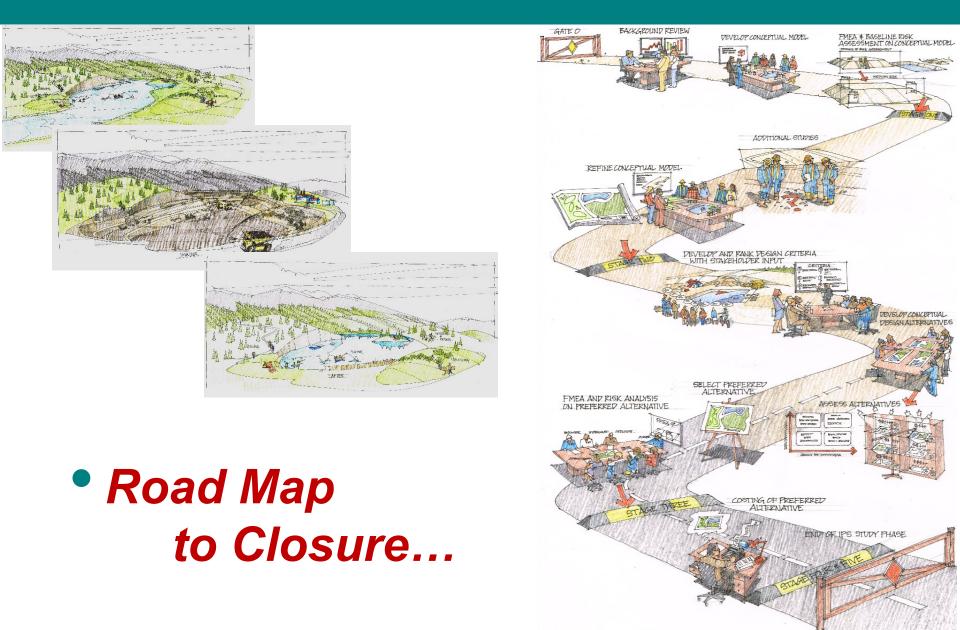




Specialists in Geochemistry and Unsaturated Zone Hydrology

### ....To This....






### ...While Thinking About This?






### How Do We Get There From Here?



### **Conduct A Gap Analysis**

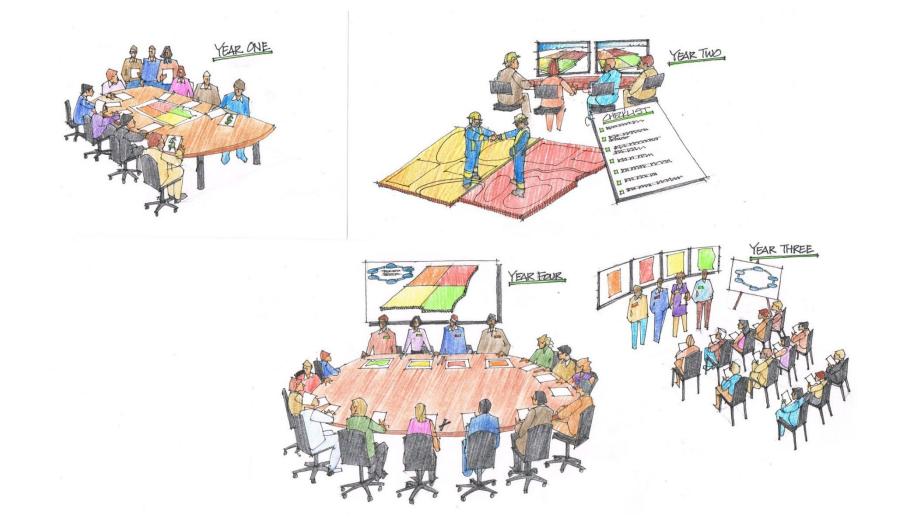
- Northern
  Saskatchewan mine
- Closure Design
- Consider future climate scenarios
- Important themes





### **Gap Analysis**






### **Consider Your Objectives**

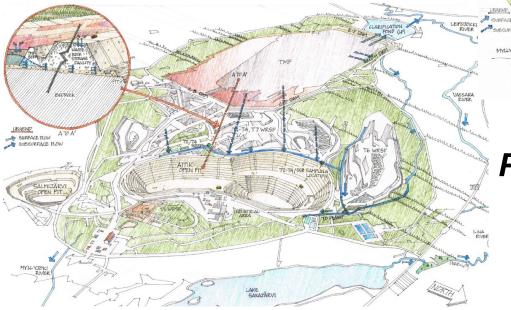
- Not a gap unless it represents a risk
- Applying our own implicit risk tolerance onto the problem
  - Implicit or Explicit
  - Bring your own experiences
  - Using the personal risk profile of the scientist or engineer
  - May not match the site's
- □ Is that risk profile is tied to the site's objectives?



### What Is The Objective?






### **Risk to Opportunity**

#### **Recognize and Communicate:**

### Closure Planning: Mine-Life-Cycle

### ...Different Temporal Scales

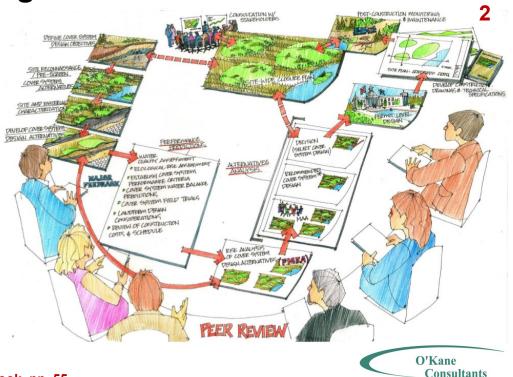
#### ...Different Risk Profiles





### Planning and Operations: Life-of-Mine (LOM) ...next 3 to 6 mths

O'Kane Consultants

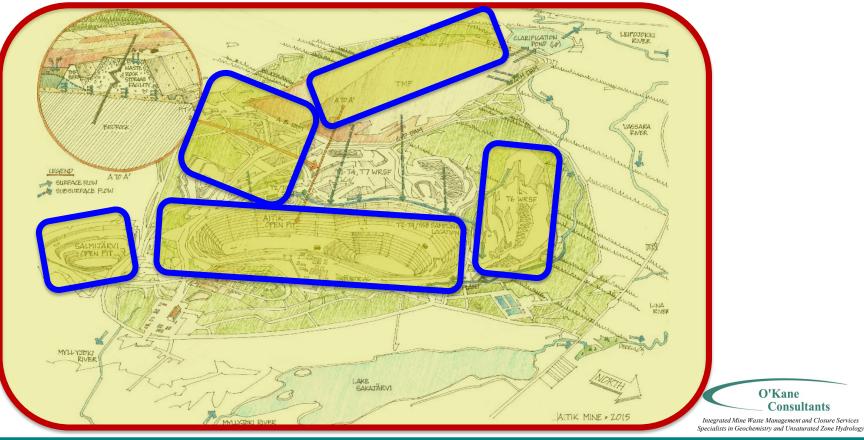

### **Risk Communication**

- Failure Modes and Effects Analysis (FMEA)
  - Distinct from a Risk Assessment
- Effective way to advance a project
  - Identify risks
  - Develop mitigation measures
  - Communicate that you've addressed them
- Technical aspects inform on the risk
  - Outcome of the process



### **Understanding / Communicating Risk**

- Failure Modes and Effects Analysis (FMEA) as a tool to inform on Engineering Design... Throughout the Project
- "A top down/ expert system approach to risk identification and quantification, and mitigation measure identification and prioritization"<sup>1</sup>
- An FMEA Approach is the Appropriate Tool to move our design through time




Robertson, A. and Shaw, S. 2006. Mine Closure. InfoMine E-Book, pp. 55
 MEND 2012. Cold Regions Cover System Design Technical Guidance Document, MEND Report 1.61.5c

Integrated Mine Waste Management and Closure Services Specialists in Geochemistry and Unsaturated Zone Hydrology

### What is an FMEA?

- An FMEA is fundamentally different than an ecological and human health risk assessment (for example)
  - Ecological and Human Health RA: Consider System as a WHOLE
  - FMEA: Failure of Individual COMPONENTS OF THE SYSTEM, and Effect on the System's Functionality



### **FMEA – As a Communication Tool**

| Failure<br>Mode                                                         | Effects<br>and<br>Pathways                                          | Likelihood            | Env.<br>Impact | Cost                            |              | I      | Human<br>Health &<br>Safety |                 | Regulatory<br>Compliance |         | Highest<br>Risk Rank |          |
|-------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------|----------------|---------------------------------|--------------|--------|-----------------------------|-----------------|--------------------------|---------|----------------------|----------|
| Differential<br>settlement<br>greater than<br>predicted for<br>landform | Discharge<br>routed through<br>tailings<br>entering lake<br>causing | High<br><b>10-50%</b> | Moderate       | Moderate<br><b>\$1- 5 milli</b> |              |        | Low<br>ion                  |                 | Major                    |         | High                 |          |
| design and                                                              | exceedance of arsenic trigger                                       |                       |                |                                 |              |        | Consequence Severity        |                 |                          |         |                      |          |
| disruption of                                                           |                                                                     |                       |                |                                 |              | Low (I | L)                          | Minor (Mi)      | Moderate (Mo) Majo       |         | or (M) Critical (C)  |          |
| surface water<br>drainage                                               | value                                                               |                       |                |                                 | Expected (E) |        | ate                         | Moderately High | High                     | Critica | al                   | Critical |

#### Permafrost melting already observed

Consequence costs reflect potential replacement of cover system sections, importing cover system materials, and/or higher unit costs

Risk of becoming out of compliance

| Moderate L<br><i>\$1- 5 million</i> |            |                 |                      | _ow   | Major           |                  | High            |                 |  |  |  |
|-------------------------------------|------------|-----------------|----------------------|-------|-----------------|------------------|-----------------|-----------------|--|--|--|
|                                     |            |                 | Consequence Severity |       |                 |                  |                 |                 |  |  |  |
|                                     |            |                 | Lov                  | v (L) | Minor (Mi)      | Moderate (Mo)    | Major (M)       | Critical (C)    |  |  |  |
|                                     | -          | Expected (E)    | Moderate             |       | Moderately High | High             | Critical        | Critical        |  |  |  |
|                                     |            | (H) ybiH        | Moderate             |       | Moderate        | Moderately Hig 1 | High            | Critical        |  |  |  |
|                                     | Likelihood | Moderate (M)    | Low                  |       | Moderate        | Moderately High  | High            | High            |  |  |  |
|                                     |            | (T) MOT         | Low                  |       | Low             | Moderate         | Moderately High | Moderately High |  |  |  |
|                                     |            | Not Likely (NL) | Not Likely (NL)      |       | Low             | Low              | Moderate        | Moderately High |  |  |  |

## FMEA – As a Communication Tool

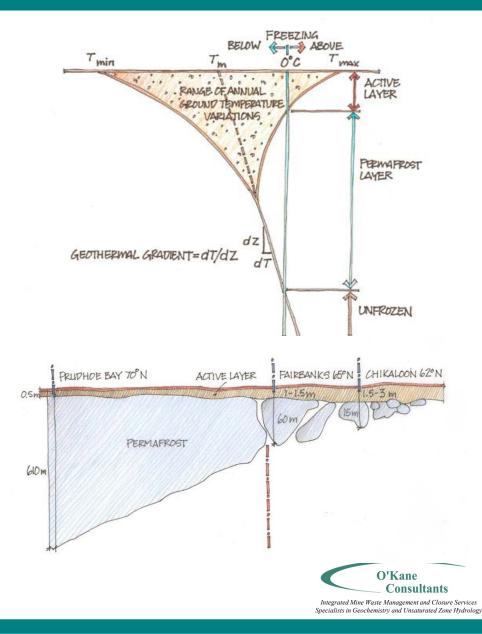
| Failure<br>Mode                                                         | Effects<br>and<br>Pathways                                          | Likelihood          | Env.<br>Impact | Co                             | ost         |      | -                    | alth &          | Regulato<br>Complia | -       | •                  | ghest<br>sk Rank |
|-------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------|----------------|--------------------------------|-------------|------|----------------------|-----------------|---------------------|---------|--------------------|------------------|
| Differential<br>settlement<br>greater than<br>predicted for<br>landform | Discharge<br>routed through<br>tailings<br>entering lake<br>causing | Low<br><b>1-10%</b> | Minor          | Moderate<br><b>\$1- 5 mill</b> |             |      | Low<br>ion           |                 | Moderate            |         | Moderately<br>High |                  |
| design and                                                              | exceedance of                                                       |                     |                |                                | [           |      | Consequence Severity |                 |                     |         |                    |                  |
| disruption of                                                           | arsenic trigger                                                     |                     |                |                                |             | Low  | (L)                  | Minor (Mi)      | Moderate (Mo)       | Major ( | (M)                | Critical (C)     |
| surface water<br>drainage                                               | value                                                               |                     |                |                                | (pected (E) | Mode | erate                | Moderately High | High                | Critica | al                 | Critical         |

Likelihood – Low: More sophisticated thermal modelling

**Env. Impact – Minor:** A comprehensive QA/QC assurance plan will be developed for full-scale construction

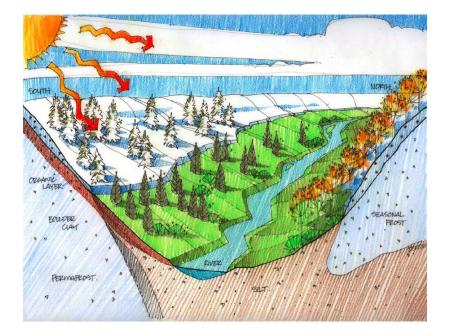
**Consequence Costs – Moderate:** Unchanged

**Regulatory Compliance – Moderate:** Adaptive management plan developed well in advance of closure


|             |            |                 |              | Cor             | sequence Sev    | erity           |                 |  |
|-------------|------------|-----------------|--------------|-----------------|-----------------|-----------------|-----------------|--|
|             |            |                 | Low (L)      | Minor (Mi)      | Moderate (Mo)   | Major (M)       | Critical (C)    |  |
|             |            | Expected (E)    | Moderate     | Moderately High | High            | Critical        | Critical        |  |
|             | Likelihood | (H) yidiH       | Moderate     | Moderate        | Moderately High | High            | Critical        |  |
| boodilati I |            | Moderate (M)    | Moderate (M) |                 | Moderately High | High            | High            |  |
|             |            | (T) Low Low     |              | Moderate        | Moderately High | Moderately High |                 |  |
|             |            | Not Likely (NL) | Low          | Low             | Low             | Moderate        | Moderately High |  |

### **FMEA – As a Communication Tool**

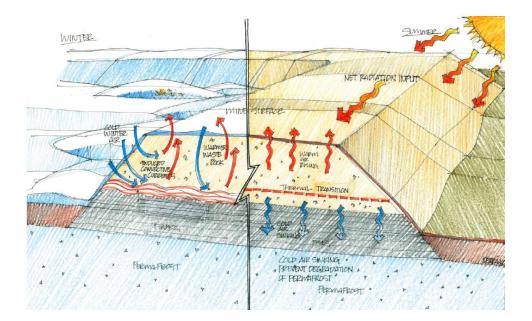
- Differential settlement greater than predicted for landform design and disruption of surface water drainage
  - Progressive rehabilitation will allow consistent evaluation of QA/QC plan,
  - Cover material characterization program
  - Develop materials balance
  - Undertake cover system field trials


### **Technical Work**

- Risks become driver for technical work
  - Guided by objectives
  - Technical work
    supports risk
    assessment
- Risk Assessment supports design
  - Avoid implicit risk aversion
  - "Keeping it simple"



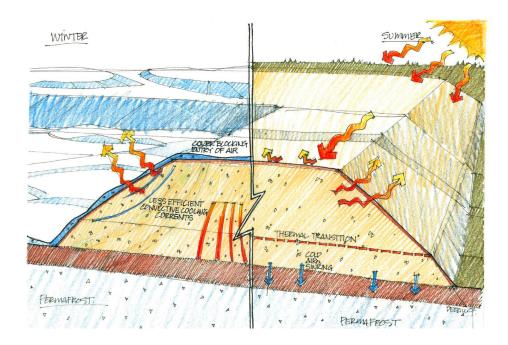
### **Conceptual Framework**


- Design as risk management tool
- Future unknowns today's design
- Rooted in risk management
  - Technical support
- Eliminate vs Mitigate
  - Suboptimal designs
- Complexity as required
  - Simple, but no simpler





### **Conceptual Framework**

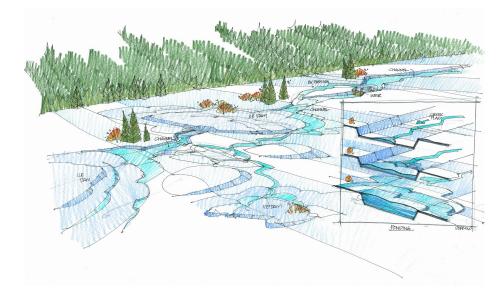

- Allows progress
  - All have been heard
  - Risks have been identified
  - Mitigation communicated
- Get into the detail without letting it overwhelm
  - Prioritize
  - Apply correct profile





### **Conceptual Framework**

- Our job as scientists and engineers
- Catalogue risks
- Revisit over time
- Take advantage of opportunities
- Focused studies
  - Serve risk mitigation






### Summary

### □ FMEA

- Communication
- Risks catalogued
- Prioritized
- Each one addressed
- Technical studies
  - Outcome of FMEA
- Failure Modes
  - Prompt a reaction
  - Revisit often
- Not designing in green box





### Conclusion

- Whose risks are you mitigating?
  - Can you demonstrate that?
- What and when are your objectives?
- Technical detail is a risk mitigation tool
  - Simple, but no simpler





### **Thank You!**









### Mine Overlay Site Testing Facility

GLOBAL INSTITUTE FOR WATER SECURITY MOSTFACILITY.USASK.CA

