

October 18, 2018

Use of Non-Traditional Materials to Cap Northern Mine Shafts

Michael Webster

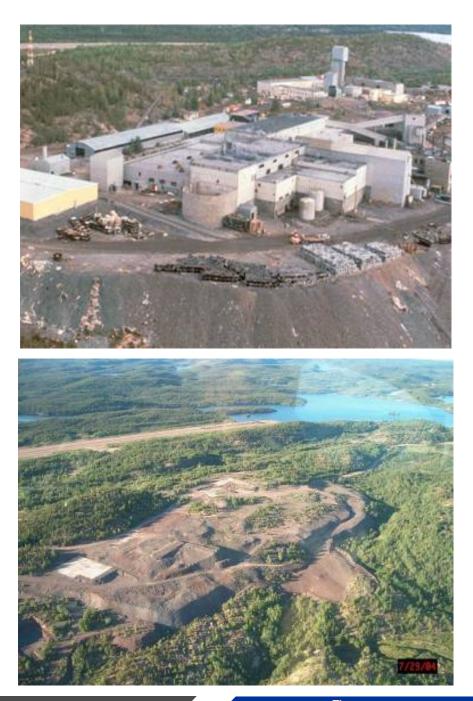
Senior Reclamation Specialist

cameco.com

Introduction

Uranium City

- 830 km North of Saskatoon
- ~60 permanent residents
- Winter road access (<2 months/year)
- Accessible by scheduled plane service



Beaverlodge Mine/Mill

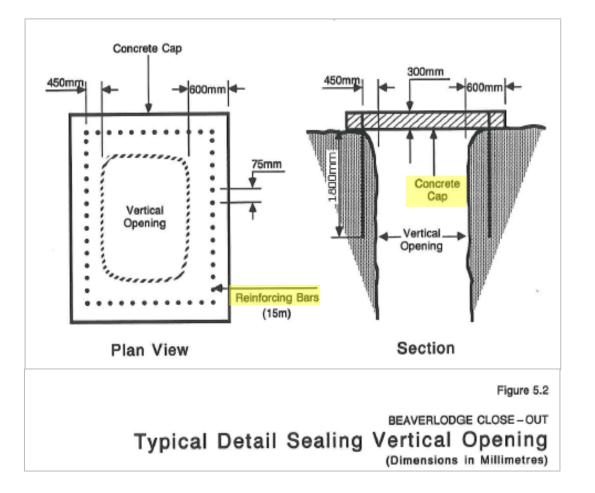
 Main facility located ~8 km east of Uranium City with road access

Introduction

- Mining and milling
 - 1952 to 1981 by Eldorado Resources
- Decommissioning and reclamation
 - 1982 to 1985
 - Approved by regulators of the day
 - Infrastructure removed or buried
 - Concrete caps installed on exposed vertical mine openings
- Cameco management
 - 1988 to present
- Goal is to return lands to Crown
 - Institutional Control (IC) program

Introduction

- Institutional Control (IC) Program
 - Introduced by the province in 2007
 - Transfer site responsibility to the Province of Saskatchewan, but sites must be safe, secure and stable
 - Purpose: Long-term management of decommissioned mine and mill sites
 - Funding provided up front to cover the cost of future monitoring and maintenance
- Historic vertical mine openings
 - Needed to ensure safe, secure and stable
 - Approved long-term sealing method


The Reclaimed Industrial Sites Act

being

Chapter R-4.21 of *The Statutes of Saskatchewan, 2006* (effective March 1, 2007), as amended by the *Statutes of Saskatchewan,* 2014, c.E-13.1.

Historic Mine Openings

1985 Proposed Sealing Method

Actual Sealing Method

- No QC for concrete
- No consistent overlap to bedrock
- Resulting in **no engineer sign-off** regarding quality of cap

Mines Regulations

Openings to underground mines

407(1) If a shaft, raise, adit or other opening to the surface is abandoned or if the workings are discontinued, the employer, contractor or owner shall ensure that the shaft, raise, adit or other opening is secured against unauthorized entry in accordance with this section.

- (2) A shaft, raise, adit or other opening must be secured by covering the top of it with a bulkhead designed by a professional engineer of reinforced concrete at bedrock or at the top of the concrete collar of the shaft, raise, adit or opening.
- (3) An employer, contractor or owner shall ensure that the cover required pursuant to subsection (2) is clearly marked with a substantial 1-metre high marker or sign that identifies the party responsible for the opening and the cover.

16 May 2003 cO-1.1 Reg 2 s407.

Mines Regulations

Openings to underground mines

20-3(1) If a shaft, raise, adit or other opening to the surface is abandoned or if the workings are discontinued, the employer, contractor or owner shall ensure that the shaft, raise, adit or other opening is secured against unauthorized entry in accordance with this section.

(2) A shaft, raise, adit or other opening must be secured by:

- a) covering the top of it with a bulkhead designed by a professional engineer of reinforced concrete at bedrock or at the top of the concrete collar of the shaft, raise, adit or opening; or
- b) a suitable closure method designed and approved by a professional engineer and approved by the chief mines inspector consisting of a long-lasting and suitable material anchored at bedrock or at the top of the concrete collar of the shaft, raise, adit or other opening.

(3) An employer, contractor or owner shall ensure that the cover required pursuant to subsection (2) is clearly marked with a substantial 1-metre high marker or sign that identifies the party responsible for the opening and the cover.

The Mines Regulations, 2018 have been approved and will come into force on April 6, 2019

http://publications.gov.sk.ca/freelaw/documents/gazette/part2/2018/G2201814.pdf

Challenges with concrete caps in remote areas

- Shipping concrete and aggregate to remote location
- Water availability
- Strict concrete engineering QA/QC requirements
 - Difficult to meet in remote field locations
- Safety concerns with working near open holes
- Requirement to replace concrete cap every 75 200 years

Potential solutions available?

local contractor suggested stainless steel

Why Stainless Steel?

Buy In

- Well understood engineering principles
- Existing success stories
- Previous exemptions

Practicality

Ease of installation, future inspections and replacement

Longevity

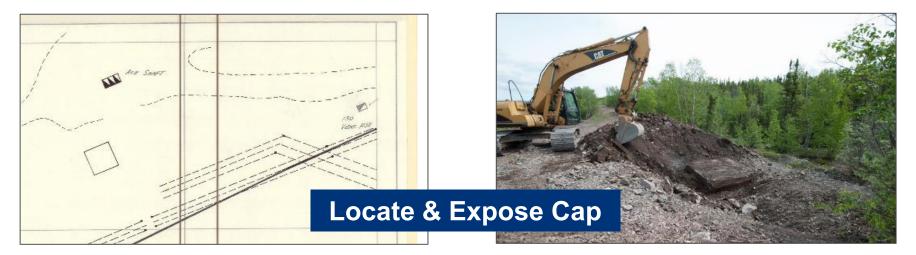
 Engineered drawings stamped for 1200 year life (minimum)

Economics

- Lower cost for remote area installation
- Lower calculated net present value for future replacement

Cameco

9


Comparison of Steel to Concrete

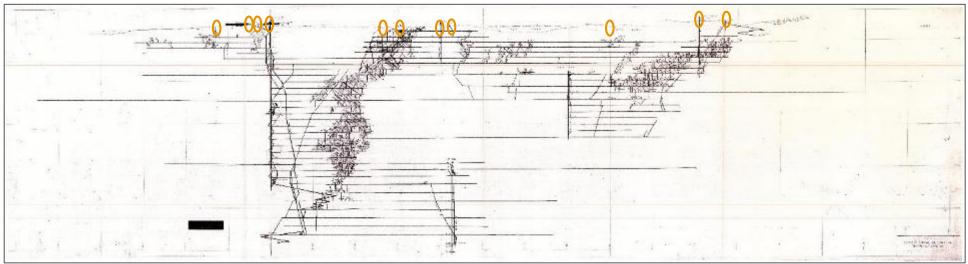
	Material Options	
	Stainless Steel	Concrete
Cost	Similar to concrete	Similar to steel
Degradation	Very Low (1mm/1200 years)	Low if engineered for specific site environmental conditions
Durability	High	High to Very High
Longevity	Likely > 1200 years	75 – 200 years
Ease of Installation	 Moderate field construction requires small/medium size equipment easy to adapt in field 	 Difficult remote location construction challenges requires small/medium size equipment Adaptable until poured
Safety	Limited worker exposure to open holes	Workers exposed to open holes
Approvals	Requires exemption from Mines Regs	Accepted methodology
NPV replacement cost	Very Low	High

Stainless Steel Cap - Design Criteria

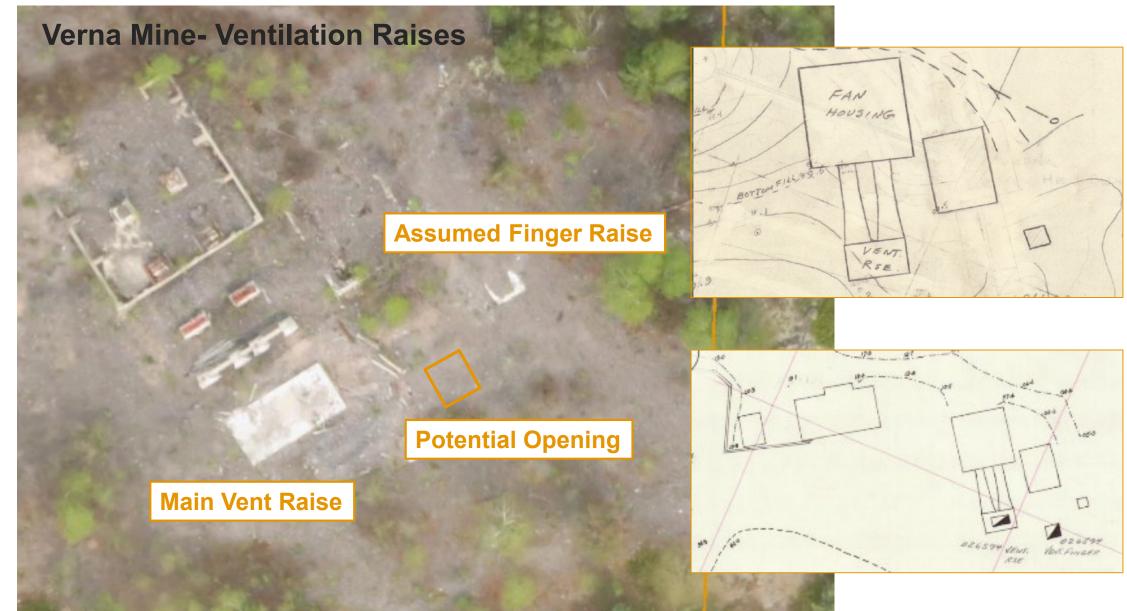
Loading Criteria	 Able to withstand a loader/skidder. 	
Drainage Criteria	 Promote drainage away from the opening and prevent water from pooling on the cap. 	
Transportation Criteria	 Cap or cap sections limited to a maximum width of 4 metres. Incorporate anchor points to facilitate loading, unloading and placement. 	
Security Criteria	 Securely anchored to competent bedrock where possible. 	
Field Fitting Criteria	 Although it is desirable to limit the amount of field fitting required, field fitting will be unavoidable and allowances in design need to be incorporated. 	
Inspection Access	 Consideration of future inspections for conditions while insuring the security of the cap and the limitation of intrusion by the public and or wildlife. 	

Securing the Mine Openings - Overview

Clean cap and surrounding bedrock


Completed cap at Ace 130 Raise

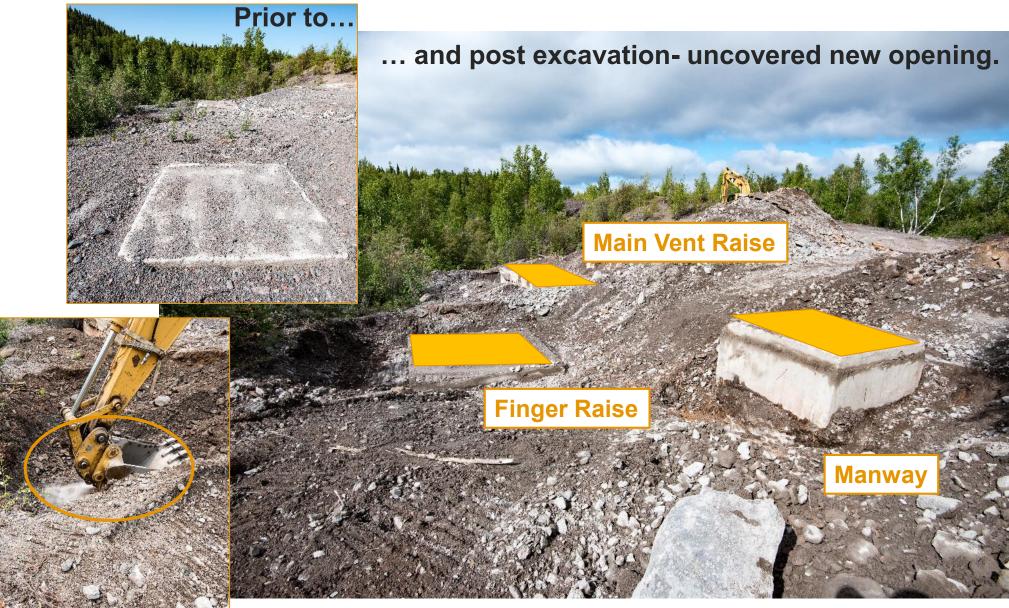
Mine Openings – Locate


1. Locate

- List of openings from the final decommissioning report
- Some concrete caps left uncovered, most buried with waste rock
 - Previous attempts to locate openings partially successful in 2010, 2013/2014
 - Located remaining openings from 2016 2018 using historical drawings and aerial photos

Beaverlodge Mine Longitudinal Section - 1982

Mine Openings – Locate


Mine Openings – Locate

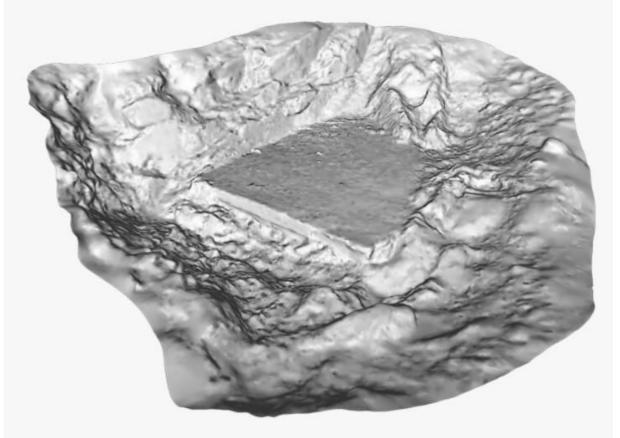
Θ

← →

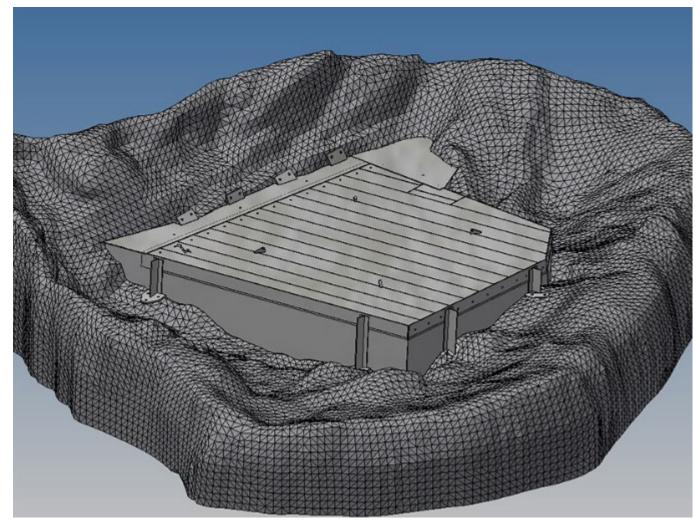
Activities – Locate

Mine Openings – Design

- Once located, the cap and surrounding bedrock are cleaned
- Design engineer (Kova) on site to determine anchor placement and scan bedrock to develop 3D model
 - Staying on the same page: field review of proposed design with installation contractor
 - Considerations: bedrock competency, size of opening, drainage, final landscaping
- Kova then generates drawings for approval and fabrication



Mine Openings – Design


Cap cleaned off with bedrock expose

Meshed surface of the cap and surrounding bedrock

Mine Openings – Design

Inventor model – showing designed cap

Completed Cap

Use of Non-traditional Materials to Cap Northern Mine Shafts

Mine Openings – Fabricate and Install

- Fabrication in Saskatoon and pre-shipment QA checks
- Shipped up to Uranium City via the winter ice road
- Uranium City Contracting is the installation contractor
- Design Engineer inspection during fabrication, install, and following final "pickle"

Use of Non-traditional Materials to Cap Northern Mine Shafts

Securing the Mine Openings - Overview

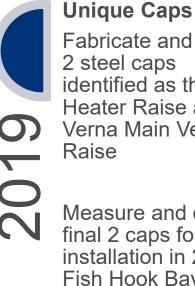
Easily Accessible

Trial Install

Fabricated and installed steel cap at the Ace Shaft

Started process for additional 11 based on success of the initial install

Fabricated and installed 11 steel caps at several properties


Measured and designing 6 steel caps for install in 2018

 \odot

Large Caps Fabricate and install 6 steel caps

Measure and design 2 steel caps for install in 2019

Fabricate and install 2 steel caps identified as the Hab Heater Raise and the Verna Main Vent

Measure and design final 2 caps for installation in 2020 Fish Hook Bay Shaft, and the Fay Shaft

Steel caps complete

Stainless Steel – not always the best option

- Stainless steel caps can be utilized in most circumstances, however there are occasions where it may not be practicable. These include but are not limited to:
 - Areas where the bedrock is unstable

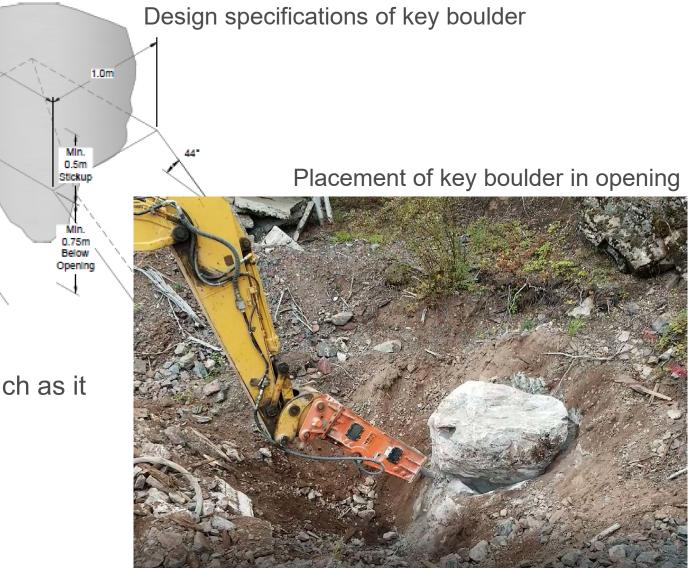
Example on next slide

- Areas with significant overburden -
- Shallow but known shaft depth
- Likely more suited to remote areas
 - Concrete caps likely cheaper when materials are readily available
 - Potential vandalism if easily accessible

1. Strategic Boulder Placement

Beaverlodge Example - Small Ventilation Raise

- Located near area of unstable crown pillar
- Remediation of crown pillar required additional fill placement near opening
- Future inspection of a Stainless Steel cap would be difficult due to waste rock cover



Ventilation raise located ~4 m below surrounding grade

- Plan required approval from Mines Branch as it was not a concrete cap
- Not recommended for high traffic areas
- Potentially limited by boulder sizes and equipment capacity

Boulders placed around key boulder

Location of Ventilation Raise graded to surrounding area

26

Use of Non-traditional Materials to Cap Northern Mine Shafts

Steel Grates

- Recent design accepted in Ontario

Expandable Foam

- Limited use, considered temporary measure to address immediate safety concerns
- Not currently accepted in Saskatchewan for long-term use

Waste Rock Backfill

- Requires known volume of shaft
- Requires approval from Mines Branch

Expandable foam in northern Saskatchewan (Non-Beaverlodge) used as a temporary closure method to address immediate safety risk photo by Michael Webster

Conclusion

Where applicable Stainless Steel caps have proven to be a safe, cost effective, long-term alternative to traditional concrete caps in remote areas of Northern Saskatchewan

- **Buy in:** Well understood engineering principles for design and construction
 - Exemptions received from Saskatchewan Mine Regulations
- *Practicality*: Ease of installation, future inspections and replacement
- Longevity: Engineered drawings stamped for 1200 year life (minimum)
- Economics:
 - Similar cost compared to concrete for remote area installation
 - Significantly lower calculated NPV for future replacement

Not applicable in all situations

Now being explored in other jurisdictions in Canada

Acknowledgements

Kova Engineering 311 Wheeler Place, Saskatoon 306-652-9229	Paul Caughlin Engineering design of Stainless Steel Caps
SRK Consulting Suite 205 2100 Airport Drive, Saskatoon 306-955-4778	Trevor Podaima Engineering design of Strategic Boulder Placement Warren Medernach UAV photo collection and processing; mine overlays
Uranium City Contracting Uranium City 306-498-2761	Kevin Lewandoski Transport and Installation of Stainless Steel Caps

Questions

Thank You !

AYBERARD MARTER ALSOROSA ADAGA ASTAKESKOLE Siddle & Editor LAST CO. REEF State/ AR PERSOR

ANNEALES ESANEM Sinter . 122 . Si faction A BESESAN - 38 FREENERS STREET ASSESSATION OF STREET, STREET,

IECONO CONTRACT

AND REAL FRANCES

THEFT

cameco.com

Pas

18-23 and 34

OURRELIETAS

S CR.

ARLT3 /8 /2

ICANERSE FRANKE

PRESRU 1232519241285P3

AND ADDREAS DATE AND AND

人民國政治会員以及自己自然國家人民主要的

Sam-as AEG- CR

AND RELESSION I

BERTERS INTON

AND CORESPONDENCE AND COMPANY OF AND COMPANY

AND THE PERSON AND TH

In Egeri Sacarea Leanna

AND ADARCHICARDOR FORMAL ON

SARA DEBRIC AND AND

ARARCERE (FRIDE-LEFER) SERVE (

BRANN CONTAINS STREET, ST

AND PROPERTY AND THE FORMER

10

INCCCUTED/INCOMES

NARA NARABAS NARAKEAN BUSU SUBURAN Karatar

APARA PRA IN SIGNATION

TARABA DARAMA MANANA MANANA

CONTRACTOR AND ADDRESS ETRERA LETRE ALTER ALT

ALLER ADDIEL ST

ALCOLLEGE Las

(BB, BEFERSIES) BR.

ARTICLE STREET FRANKS ATTER PERSONNELS

AND THE PROPERTY AND THE

salidate column

REFERENCE TRANSPORT OF THE PARTY

AND DE FARAGE LES

A BRAN AND REF

121271

isstatigatiesentings (

AND THE PARTY OF T