A Northern Saskatchewan Case Study

IMPROVING FISH HABITAT SUITABILITY ASSESSMENTS

Amy Wiebe, Sauvelm McClean, Daniel Vicente, Jackie Lukey

- Habitat Suitability Indices (HSIs) for Riverine Fish
- Hydrodynamic Modelling
- Our Approach
 - Geographic Information Systems (GIS) Tools
 - Quantification of Habitat Types
 - Geo-referenced Map Products
- Case Study: Arctic Grayling in the Fond du Lac River, Saskatchewan

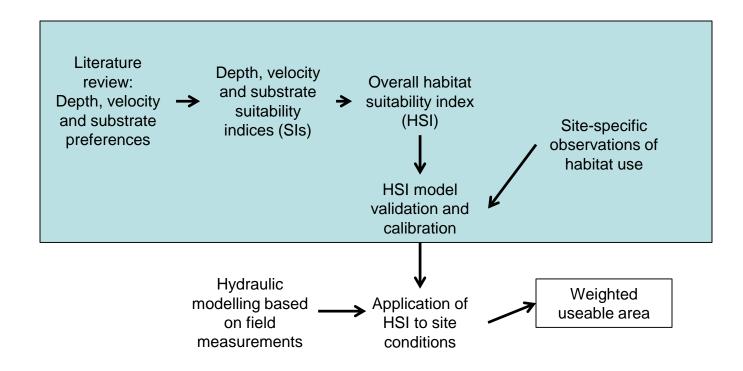
HSIs: Riverine Fish

- A method for classifying and comparing habitat types based on the preferences of the species and life stages of interest
 - Eggs, age-0, juvenile and adult fish
 - Spawning, rearing, foraging and overwintering habitat types
- Numerical indices of habitat suitability that exist on a continuous scale ranging from 0 to 1
 - 0 = unsuitable, 0.5 = moderate, 1 = highly suitable
 - Individual habitat variables (e.g., depth, velocity) at discreet spatial locations are assigned a suitability index (SI) value
 - Overall HSI values are calculated by combining the Sis assigned to the habitat variables:

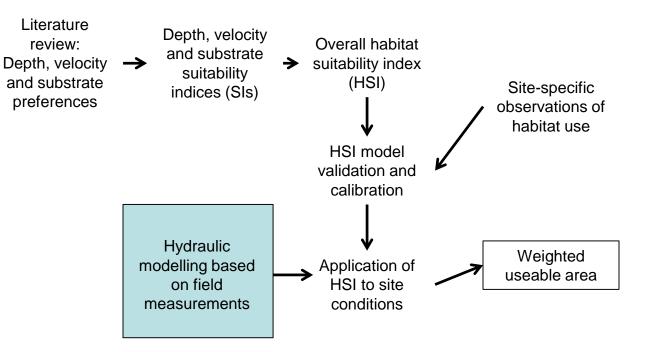
E.g., Overall HSI = the minimum of SI_{Depth}, SI_{Velocity}, SI_{Substrate}

HSIs: Riverine Fish

HSIs are a well-developed tool and have a number of applications:

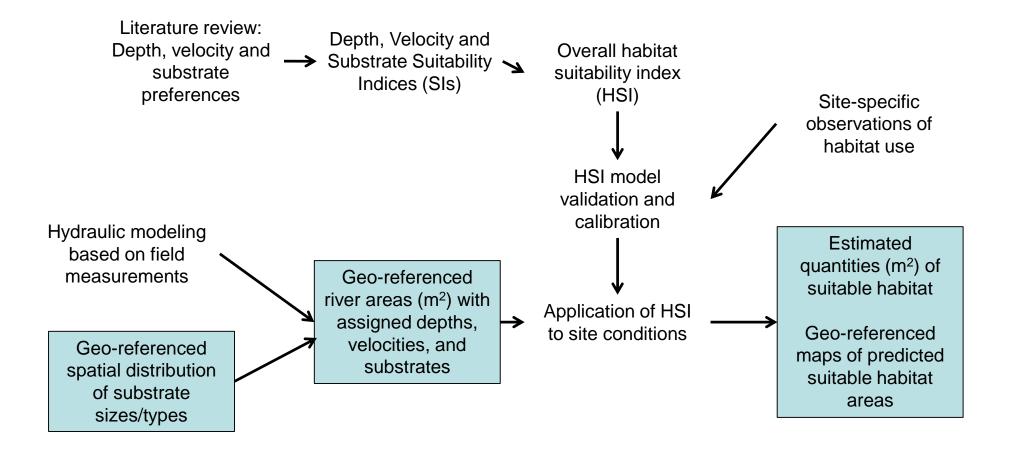

Channel diversions Water withdrawal and discharge In-water construction and infrastructure footprints Habitat restoration efforts

Baseline programs Environmental Impact Statements Fisheries Offsetting Monitoring

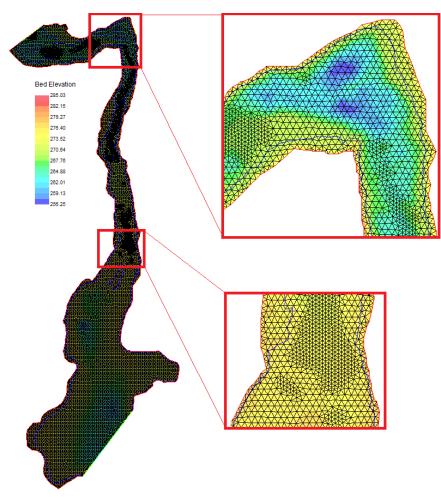

- Literature Review
 - Habitat preferences of species and life stage of interest
 - Depths, velocities, substrates
 - Comparable environments
- Field Data
 - Measurements/observations of depth, velocity and substrate
 - Water levels and discharges
 - Fish use and fish capture data

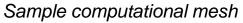
Hydrodynamic Modelling

- Field Data
 - Bathymetric data
 - Water levels and discharges
- Modelling: River2D
 - Depths and velocities at computational nodes
 - Weighted useable area is computed for entire study reach
 - Small areas of high quality habitat can have same WUA value as larger areas of poor habitat

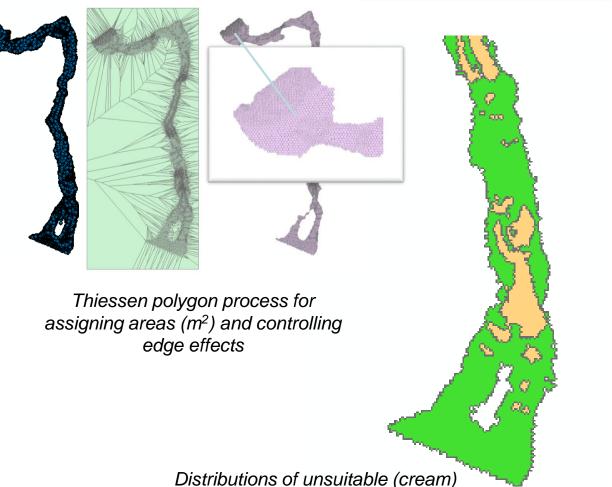


Hydrodynamic Modelling Coupled with a Geographic Information Systems (GIS) Platform



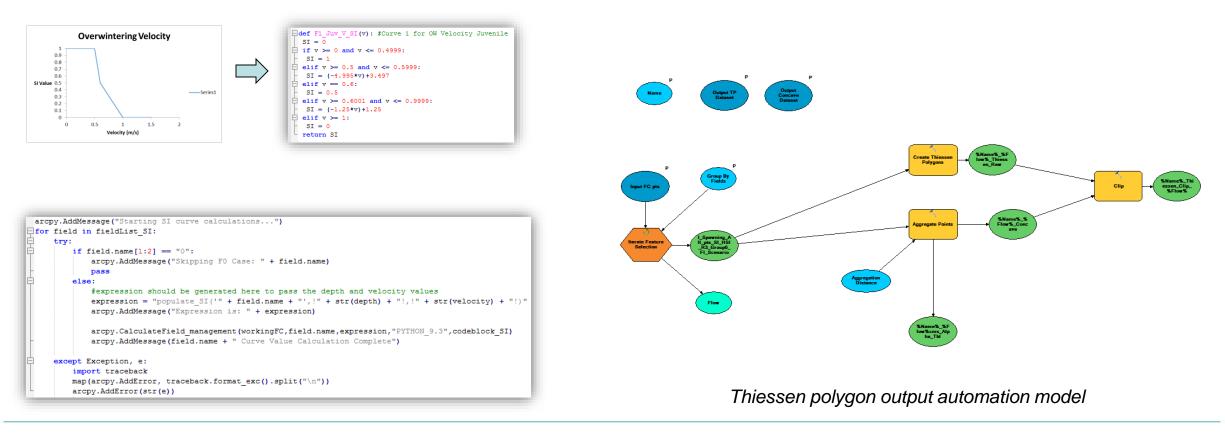

Our Approach	Weighted Useable Areas (WUAs) in River2D
 Allows for more thorough QA/QC and removal of suspicious/anomalous data points SIs and HSIs for multiple species and life stages can be assessed concurrently Areas (m²) of unsuitable and suitable habitat can be compared quantitatively among flow scenarios Geo-referenced areas of unsuitable or suitable habitat can be mapped and compared to field data 	 No QA/QC procedures to remove anomalous or suspicious data SIs and HSIs must be assessed separately for each species and life stage WUAs can be compared among flow scenarios Areas (m²) of unsuitable versus suitable habitat cannot be quantified or compared WUA data is not geo-referenced, and cannot be mapped and compared to field data Small areas of good habitat can have same WUA as large areas of poor habitat

- River2D data are exported to a GIS platform
 - Each node in the mesh represents a georeferenced depth/velocity pair



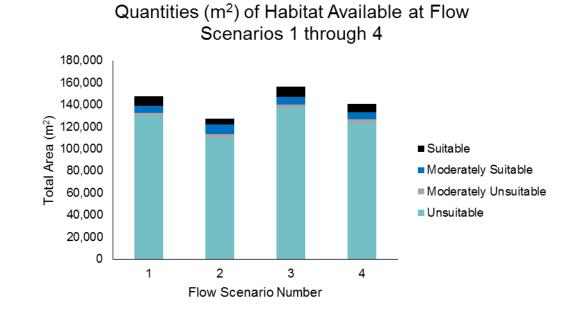
GIS

- Each geo-referenced computational node (depth/velocity pair) in the hydrodynamic dataset is assigned a river area (m²)
- Spatial distributions of various substrate types are modelled based on hydrodynamic data and field measurements
 - Existing GIS substrate layer data can also be added



Distributions of unsuitable (cream) and suitable (green) substrates

- Use Python (programming language) code with ArcPy (ArcGIS Python library and module)
- ArcGIS Model Builder for Thiessen Polygon output automation

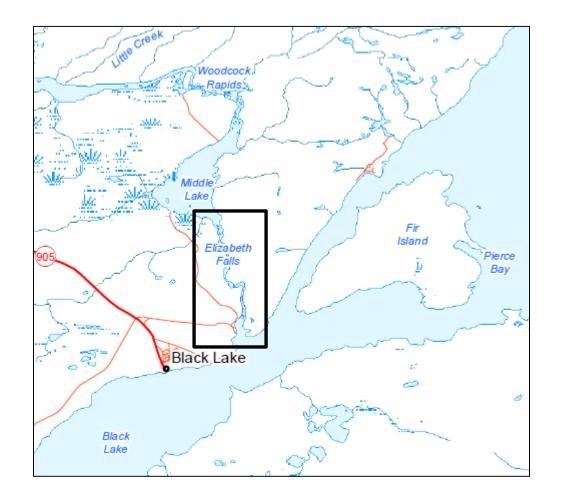


GIS

- HSI value for each portion of river area (m²) calculated programmatically
 - Based on the combined depth, velocity and substrate suitabilities at each node
- Areas classified into bins:
 - Range from unsuitable (HSI ≈0) to highly suitable (HSI ≈1)
 - Total area (m²) assigned to each bin is quantified
- Geo-referenced areas (m²) of moderate to high suitability are mapped

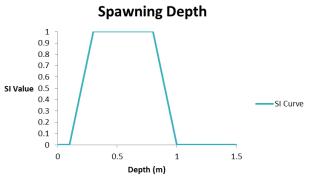
Northern Saskatchewan Case Study

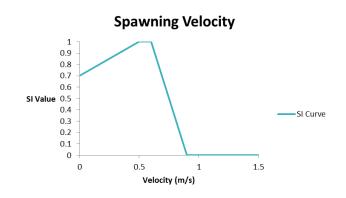
Arctic Grayling (Thymallus arcticus) Spawning Habitat in the Fond du Lac River



Case Study: Spawning Arctic Grayling

- Study Area:
 - Fond du Lac River between Black Lake and Middle Lake, SK
 - Average annual discharge: 305 m³/s
- Arctic grayling populations:
 - Support local recreational and Aboriginal fisheries
 - Spawn in the river (spring)
 - Quantity and quality of spawning habitat depends on flow conditions


Objective:

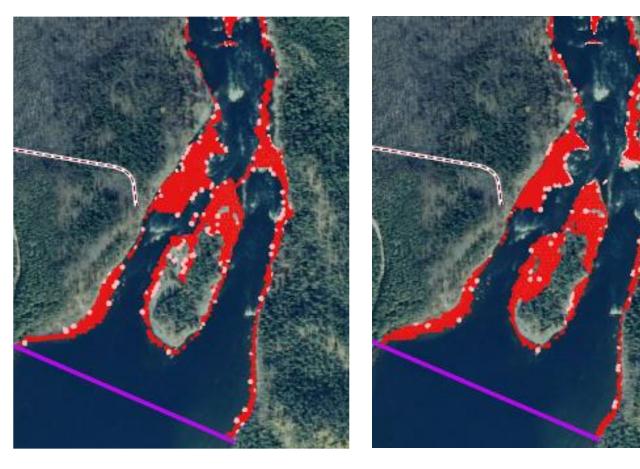

Determine the quantity, quality and location of spawning habitats available to Arctic grayling in the Fond du Lac River at low versus average spring flows

- Depth, velocity and substrate are key variables for assessing spawning habitat suitability for Arctic grayling
 - Literature review
 - Field-collected data
 - Validation and calibration
- River2D outputs
 - Geo-referenced distributions of depths and velocities
 - Low (302 m³/s) and average (400 m³/s) spring flows

- Portion of river area (m²) assigned to each computational node
- Substrate distribution modelled based on hydrodynamic data and field measurements
- HSI value for each portion of river area (m²) calculated programmatically
- Areas classified into bins and summed, based on assigned suitability
- Geo-referenced areas (m²) of moderate to high suitability are mapped

- Quantities (m²) of unsuitable and suitable habitat types available at a low versus average flow year?
 - 2.06 km section of river immediately downstream of Black Lake

		Area (m ²)		
Habitat Classification or Metric		Average Spring Flow	Q10 Average Low Spring Flow	
		400 m ³ /s	302 m ³ /s	% Change
0.0000-0.2500	Unsuitable	136,916	129,565	-5.4
0.2501-0.5000	Moderately Unsuitable	3,206	3,135	-2.2
0.5001-0.7500	Moderately Suitable	7,092	6,313	-11.0
0.7501-1.0000	Suitable	9,355	8,910	-4.8
Total Wetted Area o	f Assessment Section	16,447	15,222	-7.4


 m^2 = square metres; $m^3\!/\!s$ = cubic metres per second; % = percent

 Quantities (m²) of moderately suitable (HSI = 0.5 to 0.75) habitat areas decrease the most when spring flows are reduced

Case Study: Spawning Arctic Grayling

Habitat variables: Distributions of moderately and highly suitable spawning depths

- Left panel: 302 m³/s
- Right panel: 400 m³/s
- Pink: Moderately suitable depths (SI = 0.5 to 0.75)
- Red: Highly suitable depths (SI = 0.75 to 1)
- Purple line = assessment area boundary

Case Study: Spawning Arctic Grayling

HSIs: Distributions of moderately and highly suitable spawning habitat areas

- Left panel: 302 m³/s
- Right panel: 400 m³/s
- Pink: Moderately suitable depths (SI = 0.5 to 0.75)
- Red: Highly suitable depths (SI = 0.75 to 1)
- Purple line = assessment area boundary

- HSIs and hydrodynamic models are valuable tools for assessing fish habitats in riverine environments
- Our approach improves on existing methods by:
 - Allowing for more thorough QA/QC
 - Supporting concurrent analyses for different flows, species, and life stages
 - Saves time and budget
 - Allowing for classification of habitat areas (m²) and quantification of various habitat types
 - True habitat area (m²) outputs support data interpretation better than an WUA index value
 - Allows for comparisons among flow scenarios
 - Producing geo-referenced results that can be mapped to support identification of critical habitat areas
 - Better spatial representation of data
 - Maps can be batch-processed for the variables and habitat types of interest
 - Can identify areas where fisheries offsetting could be considered
 - Areas where habitat is limited by a single variable that could be manipulated (e.g., modifying substrates)

Photo: Leah James

Questions?