Clifton Associates

October 2018

Mark Wittrup, VP Environmental and Regulatory Affairs

Small Modular Reactors

Application to Mining and the North

Small Modular Reactors

- Intro
- SMRs
- Discuss need
- A few types
- A possible path forward

When Asked About Nuclear

- Most people:
 - Flinch
 - Avoid the issue (and eye contact)
 - Start to tell me what's wrong with Nuclear
 - Cost
 - Godzilla
 - Fukashima, Chernobyl and Three Mile Island
 - Nuclear weapons
 - Radiation
 - Regardless admit benefits v.v. Climate Change

When Asked About Nuclear.....

- I tell them to forget about the 'old' nuclear
- Focus on what's new and different:
 - Generation 4
 - Small Modular Reactors SMRs
 - Changes that make them
 - Lower risk
 - Safety in 'aircraft like' production QC
 - Portability
 - Simpler design and construction
 - Reinforce the Climate Change benefits

SMRs

- Small Modular Reactors
 - Nuclear reactors, ≤300MWe (range 4 to 300MW_e)
 - Generally use slightly enriched or low enriched uranium
 - Modular scalable through multiple units
 - 'Mass' producible production line assembly
 - Relatively portable units large truck size
 - Most use 'inherently safe' technologies
 - Most run hot produce a lot of heat (600 700°C)
 - Civil works are simpler
 - Don't generally need containment structures
 - Don't need larger exclusion zones

To Be Clear

- SMRs are part of the energy solution
 - We will need a full energy mix
- Complement renewables and natural gas
 - Load following capabilities
- Can play a significant role in GHG reduction
- Have some specific applications
- May have competitive per MW costs
 - If current estimates accurate

Why Right Time?

- Current Fleet of Large Plants
 - Coming to end of life/require refurbishment
 - Expensive to build as all one-of-kind builds
 - Huge cost overruns recently
 - Finnish reactor estimated to be \$12.5B for 1100 Mw_e
 - Relatively complex technology
 - Risk of meltdown (e.g. Fukashima)
 - Either continuously refuelled (Candu) or every two years
 - Spent waste a problem highly radioactive

Why Right Time

Old Nuclear has lots of baggage

- Nuclear development legacy
- Many designed specifically to provide countries with nuclear weapons materials

SMRs can address some current issues

- Energy needs
- Scalable support renewables
- GHG commitments

Climate Change

- Need for GHG free energy
 - Huge driver
 - Can replace/supplement fossil fuel generated power
- SMRs produce power with low carbon inputs
 - Manufacturing
 - Transport
- Supports renewables
 - Need for base load
 - Load following capabilities
- Offsets could be applied to national/provincial reduction targets

Alberta Oil Sands Example

- If production of 1.3 million barrels per day from SAGD
 - Requires 110 kg CO_{2e}/bbl (production + upgrading)
 - Or 52 M tonnes CO_{2e}/year
- If \$50/t CO_{2e}
 - Then cost is \$2.6 billion/year in carbon taxes
- SMRs
- Developed using carbon credits
- Offsets applied to industry
 - Open up new production allowances under 100 Mt cap
- Heat can produce steam for production/H₂ for upgrading
- Still heat for co-generation
- GHG offsets help provincial and national goals

Northern and Remote Sites

- Often off the electrical grid
- Renewables costly and inefficient
- Power supplied by diesel generators
 - Diesel has to be brought in seasonally and stored
 - Can be subject to the vagaries of weather
 - Expensive!
 - More so if it has to be flown in
 - Risk of spills and accidents
 - Can be noisy and produce exhaust/localized pollution

Northern and Remote Sites

- SMRs can be sized appropriately to locale
 - Currently a variety of models to choose from
- Could be shipped by road, rail, ship or aircraft
- Civil supporting works are relatively simple
 - Manageable in a remote location
- Provides heat and electricity
- Periods between refueling relatively long (7 to 20 years)
- Spent modules removed from site recycled
- Can be quiet, secure and noise free

E.g. - Northern Saskatchewan

- Northern grid maxed
- Likely unable to support new mines or development
 - Means power generation using diesel or LNG generators
 - Or expensive power grid upgrades
- A well placed SMR(s)
 - Provide a stable grid
 - Reliable base load power
 - Heat for processing

Mines

- Often northern and remote
- Require stable power that can support operations
 - Hoists
 - Process machinery start ups
 - Mill machinery
 - Electrification of U/G operations
- Power lines subject to lightning strikes/accidents/fire
 - Require back-up power
- All fuels need to be transported to site

Mines and SMRs

- Scalable units
- Produce heat
 - Electrical generation
 - Heating shafts in winter to prevent freezing or conditioning air
 - Process heat
 - Heat to accommodations and offices
- If on grid can supply excess power and recover some costs

SMRs

- Several technologies being developed
 - Not new for the most part, but improved
- Advanced Light Water Reactors (Mini-PWRs)
- Variations on molten salt technologies
- Pebble beds with various coolants

Advanced Light Water Reactors

Nu-Scale

- Current front runner in US
- Is working with CNSC on the design verification stage

Not my favourite

- Needs a containment vessel
- While self circulating, needs water as a coolant
- Needs low enriched fuel (≤ 4.95% U²³⁵)
- Mechanically complex compared to other options
- Runs cool compared to other SMRs (<300C)
 - Don't get the benefit of heat for other processes

Molten Salt Technologies

- Variations on molten fluoride salts mixed with a uraniumfluoride salt
- Produces heat
 - Run long and hot, and burn through some progeny
 - Many self-circulating, most not water cooled
- Relatively simple infrastructure no containment vessel
- If containment break, no gases,
 - At worst: passive dissipation of nuclear heat

Molten Salt Technologies

Canada

- Terrestrial Energy's Integral Molten Salt Reactor
 - Pursuing licensing in US and Canada
 - Uses graphite as a moderator with replaceable core
 - Based on a tested design from Oak Ridges Lab in US

Britain

- Moltex vented molten salt technology
 - Can use spent reactor fuels as fuel
 - Continuous refueling
 - Produces a waste that only needs 300 years storage
 - New Brunswick has shown some interest and invested research \$

Coated particles embedded in graphite

TRISO coated particle

Section

Porous carbon buffer 95/1000mm

35/1000mm nner pyrolytic carbon

> Uranium dioxide Fuel kernel Science Direct

Pebble Bed Type

- URENCO U Battery
 - TRISO pellets

• Small uranium core (0.5mm) wrapped in ceramic coatings and graphite shell

- Very strong, spherical
- Helium and nitrogen cooling
- Smaller units (~10-Mw_e)
- Easily scalable with multiple units

 TRISO pellets good to 1800°C (>200°C over maximum accident scenario)

Other SMRs

- There are a lot under development
 - Many countries working on SMRs
 - US, Canada and Britain
 - Also Japan, Korea and others
 - Actively being built in China and Russia
 - Not apparently hindered by regulators or cost
 - Russians putting on ships to power remote communities
 - Would rather see Canada develop technology
 - Become a leader in this field

Practical Uses of SMRs

- Oil Sands especially SAGD
 - Process heat for thermal release of oil
 - Waste heat still hot enough for co-generation
- Oil and Gas/Hydrogen fuel
 - Hot enough for hydrogen production
- Distillation of sea water/water purification
 - Lots of heat
- Distributed power grids
 - Many smaller units in a stable power grid perfect for SK

Encouraging Signs

- Interest in SK, AB, NB and ON
 - Fedoruk Centre for Nuclear Innovation
 - But, mostly just interest
- Some grant money from governments NB and Moltex
- Several entering CNSC design validation process
- Indications of interest in testing at CNL, Chalk River
- More conferences, better attended
- Canadian politicians interested but not overtly
- Some moving to licensing in the US US more aggressive
 - Legislation to accelerate advanced reactor deployment

Discouraging Signs

- New age of Luddites?
 - NIMBY: Not In My Back Yard
 - BANANA "Build Absolutely Nothing Anywhere Near Anything/Anyone")
 - Decline of scientific and technical literacy
 - Fake news Orwellian
- Cheapness of natural gas
- Nuclear legacy still haunts
- Nuclear knowledge retiring
- Government's unwillingness to fund/support

Something to Think About

- Site C Dam will cost \$11+ billion (current estimate)
 - Produce 1100 Mw_e (maximum output)
- This is the approximate cost and power output of the Finnish Olkiluoto Nuclear Power Plant
- \$11B would fund approximately 8 FOAK SMRs
 - Could produce >>1100 MW_e and MW_t
 - Less environmental impact!
 - Support SK U mining industry
 - Develop Canada as an SMR leader

Site C Joint Panel Said:

Site C "would produce fewer greenhouse gas emissions per unit of energy than any source save nuclear."

But that doesn't consider the project's impacts from:

- Damming the Peace River
- Downstream impacts Athabasca Delta/Wood Buffalo NP
- Establishment of reservoirs (85km²+)
- Methane from rotting vegetation
- The huge quarries required to support the construction
- Etc.

Conclusion

- SMRs need a financial backing to get going
 - Someone (government?) to help with FOAK costs
- Government also has to publicly support option
 - Backed by a strong national regulator
 - But Silence is damning
 - Yet behind the scenes government's say they are in favour – interested
- Need companies to take the leap
 - May if government supports concept

Conclusion

- SMRs offer a potential GHG-free power source
 - Relatively safe
 - Ideal for scalability and/or isolated locations
 - Support renewables
 - Process heat for electricity and other uses
 - Hydrogen fuel, desalinization, industrial processes, SAGD
 - Cost competitive
- Canada could be a leader in their use and deployment
 - Could beat US at this there is still time

